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ABSTRACT

The effects of mode coupling due to scattering effects in a traveling-

wave He-Ne ring laser are investigated_ both theoretically and experimentally.

A Lamb type calculation is made in which the effects of scattering are

treated as source terms in Maxwell's Equations. _his results in a scattering

correction to the self-consistant equations. The scattering correction to

the single mode amplitude equations result in mode competition between the _

oppositely directed beams and possible extinction of one of the beams. The

scattering correction to the frequency equations produces frequency synchron-

ization between the oppositely directed beams. Experimental verification of

both effects is given.
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INTRODUCTION AND SUMMARY

This report relates the results obtained during the one-year contract

NAS 12-27_ "Experimental Research on Critical Problems Associated with the

Laser Integrating Gyro."

The objective of this contract is to establish the ultimate accuracies

associated with the use of the ring laser as an inertial component by per-

forming basic research on critical problem areas associated with development

of the Laser Gyro.

The particular areas of study and experiment are:

i) To perform a thorough analysis of the fundamental behavior of the

Laser.

2) To construct a mathematical model of a laser gyro showing all error

sources including non-linearities which may exist.

3) To perform design proof of the math model through testing for the

following:

a) lock-in

b) anisoptropic scattering as it effects nullshift

c) mode pulling
2

d) g sensitivity

e) variation of parameters

4) To calculate for the device errors on io_ 2o 3 and 3_ basis.

A model of a traveling-wave ring laser 1'2 was developed which included

mutual coupling between the oppositely directed beams due to scattering effects.

The model was a Lamb 3 type calculation where an assumed electromagnetic field

in the cavity_ polarizes the atoms and acts as a source of scattering. The

macroscopic polarization and the scattering are treated as source terms in

Maxwell's equations to calculate a reaction field. This reaction field

must equal the original assumed field in the cavity for self-consistency.

The self-consistency gives a set of equations to determine the amplitudes

and frequencies of the modes of oscillation.

For single mode operation there are four coupled self-consistent

equations to determine the frequencies and amplitudes of or oppositely

I
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directed traveling waves. For the case of the beams being frequency

synchronized_ the self-consistent equations reduce to three coupled equations_

a pair of amplitude equations and one equation for th_ phase difference

between the oppositely directed beams.

The amplitude equations 3 under certain conditionsj reduce to a pair

of coupled cubic equations. From symetry considerations_ only four of the nine

solutions are independent. The solutions predict that for a single isotope 3

mode competition occurs at the doppler center. The source of the mode com-

petition is the backscattering of energy from one of the beams into the direction

of the other. Depending on the strength of the ba_k_cattering_ extinction of

one of the beams may or may not occur. All four types of modern competition

solutions were experimentally observed.

Backscattering was varied by externally retroreflecting one of the beams

into the direction of the other. A polarizer was used to control the amount

of backscatter. While the beams were frequency locked the phase difference

between the oppositely directed beam was measured and correlation with the

model was found.

For the case of the beams being unlocked in frequency 3 the frequency equations

predict the lock-in phenomena 4. The source of lock-in is the mutual coupling by

backscattering_ of the oppositely directed beams.

Anisotropic forward scattering was shown to produce a differential cavity

length for the oppositely directed beams and give rise to a frequency difference

in the absence of rotation (null shift). Null shifts were also shown to be

produced by velocity flow (Fresnel drag) effecgs.

Lock-in and null shift were experimentally investigated as a function

of tuning the frequency of oscillation across the doppler gain profile.

The stability of the laser when operated as an integrating gyro was

investigated by rotating the laser in both directions3 at a rate much larger

than the lock-in threshold. After a period of five hours and after correcting

for earths rate_ the bias rotation rate was found as 3.6 deg/hr with a l_/hour

of 0.3 deg/hr.
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With the completion of the contract_ it is felt that the treatment of

a ring laser is on as firm a basis as the treatment of a l_near laser. The

basic theoretical model has been confirmed experimentally. Due to a limitation

in time 3 however 3 all the details of the model have not yet been experimentally

confirmed.
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2. MODIFICATION OF THE LAMB MODEL

In Lamb's model3for a SWOM he considered a semiclassical model_ in which

the electromagnetic field obeyed Maxwell's equations while the gaseous atoms

obeyed the laws of quantum mechanics. The treatment was a self-consistent

one_ in which am assumed electromggnetic field (standing wave) in the cavity

polarized (non-linearly) the moving gaseous atoms. The microscopic polariza-

tion was then considered as a source term in Maxwell's equations. The derived

field was equal to the original assumed field in the cavity. The self-consistency

gave conditions on the amplitude of the field and the frequency of oscillation. The

latter equations gave conditions on threshold_ output power as a function of
f

cavity _uning ("Lamb Dip")_ frequency pulling and pushing_ combination tones 7

8
and the related phenomena of frequency locking.

The nonlinear contribution to the polarization arose from a third order per-

turbation term in which the atomic system was considered to have interacted

three times with the radiation field. Each interaction involved a doppler phase

shift such that at the time of observation the net phase shift was zero. The

standing wave was considered to have been decomposed into two traveling

waves and the atomic system interacted with the traveling waves; twice with the

one going in one direction and once with the one going in the other direction.

Since the empty cavity normal modes were chosen to be standing waves_ a

standing wave type radiation field was necessary to obtain the correct contribu-

tion to the third order polarization.

In the traveling wave ring optical maser (TWOM) where the waves running in

each direction are independent one cannot use Lamb's standing wave formulation.

What will be presented here is a modification of Lamb's formalism to allow

treatment of both the traveling and the standing wave optical maser. The

results agree with those obtained by Lamb for the SWOM case.

As in the Lamb model_ a self-consistent approach is used. An electromagnetic

field is assumed to exist in the cavity. The interaction of the radiation with

the ensemble of atoms having axial velocity components within an incremental
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velocity around velocity v is considered. This ensemble sees a Lorentz trans-

formed radiation field in its stationary frame. Thus the interaction between

the cavity radiation field and the moving atoms is reduced to an interaction

between a doppler shifted radiation field and an ensemble of stationary atoms.

In the Lorentz transformation_ amplitude transformations are neglected. Only

frequency transformations are considered.

In the frame of the moving atoms, the radiation field polarizes the atoms.

Applying the inverse Lorentz transformation the polarization is transformed

back to the cavity frame. The polarization in the cavity frame is then averaged

over all velocity ensembles. The macroscopic polarization is then used as a

source term in Maxwell's equations to calculate a reaction field. For self-

consistency the calculated reaction field must equal the original assumed

radiation field in the cavity. This self-consistency gives a condition on the

amplitudes and frequencies of the modes of the radiation field.

A further extension of the Lamb model is made by allowing for the coupling

of the oppositely directed travelins waves (ODTW) by the mechanism of

scattering. As in the Lamb model_ to avoid a complicated boundary value problem_

the losses of the cavity are introduced by assuming that a ficticious optical

conductivity permeates the entire cavity. The effects of scattering are introduced

by assuming a further fictious conductivity caused by scattering. The scattering

conductivity term is used as a source term in Maxwell's equations and a scattering

correction to the self-consistant amplitude and frequency equations is obtained.
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3. ELECTROMAGNETIC FIELD EQUATIONS

In this section the equations to determine the amplitudes and the frequencies

of oscillation of the cavity modes_ are derived. Starting from Maxwell's

Equations in a rotating frame the inhomogeneous wave equation for the electric

field is obtained. Since this is a selfconsistent treatment_ the source term

is the macroscopic polarization which in turn is due to the electric field in

the cavity polarizing the gaseous atoms. In addition_ the energy which is both

forward scattered and back scattered into the cavity_ is considered as a

This self consistent treatment is represented schematically insource term.

Figure (1).

Figure i. Block Diagram of Self Consistant Treatment

The diagram shows the scattered energy and the macroscopic polarization

as source terms for the determination of the electric field intensity. The

electric field intensity is the source of the scattered energy and polarizes the

atoms. The calculation of the polarization is a quantum mechanical calculation

which is done in a later section. In this section the macroscopic polarization

is assumed known. It should be noted that the scattered energy does not

directly affect the polarization. It indirectly affects the polarization in that

the frequencies and amplitudes of the field are affected by the scattered energy

and these in turn determine the polarization.

Spontaneous emission is not considered as a source term. Hence for the pur-

poses of the analysis, line width of the oscillating modes is considered

much smaller than any other frequency difference.

The calculation to leading to the self consistant equations, which determine
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the amplitude_ and frequencies of oscillation of the mode of oscillation_

will only be outlined here. Details of the calculation can be found in

Appendix A.

Maxwell's equations are written for a linearly polarized field and are ex-

pressed in a uniformly rotating frame. The equations are separated and the

one dimensional inhomogeneous wave equation for the electric field intensity

is obtained. The source terms for the wave equation are the microscopic

polarization and a term resulting from scattered energy. The wave equation is

solved by expanding the solution into the set of the empty cavity normal mode

eigenfunctions (ECNME). Substituting back into the wave equation_ one then

obtains two sets of inhomogeneous equations for the time dependent coefficients

of the ECNME. The source terms are now the Fourier components_ with respect

to the ECNME_ of the polarization and the scattering field.

The_time dependent coefficients of the ECNME are then written such as to

reduce_ in an empty cavity_ to independent sets of oppositely directed

traveling waves. A 'set of oppositely directed traveling waves_ is schematically

represented in Fig (2)

E2 (w2t + %oe) _ ........

SeE2_(w2 t +cp 2 + 6 2 ) < ..........

tiE I (wit + fl01+ e l) -_

........... _ E 1 (wit + %o1)

............. _" SlE 1 (wlt,+.%o 1 + 5__)

...... _ r2E 2 (w2t +%o 2 + Z2)

Figure 2. Scattering Source Terms

EI_ E2 and Wl_ w 2 are the amplitudes and frequencies of the oppositely directed

traveling waves. The scattered energy is assumed to be of two types7 a

forward scattered part and a back scattered part. For forward scattering_

it is assumed that a fraction Sl_ s2 _ of fields EI_ E 2 is scattered into the

original direction_ but with an additional phase 61_ 82_ respectively. For

back scattering_ it is assumed that a fraction rl_ r2 of fields EI_,:E2 is

scattered into the opposite direction with an additional phase el_ e2 respectively.

With this representation of the fields_ the self-consistant equations for the

determination of the amplitudes and frequencies of oscillation of each mode are
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found to be

Elm +_-_n KIn _o (_In - Sin) - _ r2nE2n cos (_n + ¢_n )

SlnEln cos _in '

S

2£
o

(i)

. (y

• _" Cln) Tin) _ s
E2 n + 2__n E2n_ = _u) i (Sin _ sin _n - (Sin + cos _nl-TCo

'- ]

(Y

- - _ s2 E2n cos g2nrlnEln cos ($n ¢in ) 2¢ o (2)

• (y
R) S

(_in - @in ) Eln --_-- (Cln +gIn ) +2-_- r2nE2n sin (*n + £2n )
o o

S

+ 2_ ° SlnEln sin 81n _

(3)

• [ n](f_2n e2n) E2n _ (Cln - Sin ) cos _n - (Sin +TIn) sin _

_ (4)
S S

2¢ rlnE1, sin (_ - ¢in ) + o _n An 62n........ -- so Eo sin
0 '-_'0

where

_n = (W2n Wln )t + (_'2n - q°In) (5)

i_ a slo_ly:va_Ing function 0f::time. The::terms in w/Q represent the losses

of the mode• Theterms in S and C are the "in phase" and "in quadrature"

parts of the Fourier components of the polarization• They can only be

determined by a detailed knowledge of the interaction of the atomic system

with the electromagnetic field. They will be evaluated in sections 6-9.

The terms in f21_ 0 2 represent the empty cavity frequencies for fields EI_

E2_ respectively. In a rotating frame D I will be different from _2 .8-
ir

I
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4. SELF-CONSlSTANT EQUATIONS PHYSICAL SIGNIFICANCE

A discussion of the physical significance of the source terms for the

inhomogeneous wave equation for the electric field intensity due to scattering

effects_ is in order at this point. This discussion will be made in conjunction

with understanding the signficance of the self-consistent equations.

For simplicity consider the self-constant equations for only a single mode.

RotatiQn removes the directional degeneracy on both frequency and ampli-

tude of the oppositely directed traveling waves and the self-consistent

equations can be written as

= (Gain) - ---_s r_E 2 cos (_ + s SlEl cos 51 (6)E1 + 2Q- E1 i e¢ ::_ ¢e ) e¢
o o

• _
S

w s r2E I cos (_ - el) .... 2¢ s2E2 c°s52 (7)E2 +2-_- E2 = (Gain)2 2¢o o

• o E2 _s

- ----_sr -- sin (¢2 + 9) + 2-_o Sl sin 51(_i el) = 2¢ 0:2 E 1 (8)

• _ E 1S s

- = _ rI sin (e I - _) + 2--_- s2 sin 52(% °l) 2% _ o (9)

with

=e 2- e1 = (w2-®1 ) t +_P2(t) -_l(t) (i0)

In the self-consistent equations the explicit effects of the polarization of the

medium have been suppressed• Only the fact that the medium provides gain

has been included in Equations ( 6, _). Frequency pulling due to dispersive

effects of the medium have also been neglected in Equations (8_ 9)-

The gain dependence of the active medium and the dispersive effects of the

medium can only be Kdiscussed in a quantitive fashion after a quantum mechanical

treatment of the interaction of the atomic system with the electromagnetic

field. Qualitatively_ it is seen from 7Eqs • (8_9) that in the absence of

scattering effects_ the system will oscillate at the cavity frequency
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(modified by a frequency pulling due to the dispersive properties of the active

material). For steady state oscillations and in the absence of scattering

effects_ Eqs:. (6_7) give the oscillation condition that "gain equals loss

at the frequency of oscillation".

As will be shown in a later section_ the gain term in Eqs, (6, 7) is of the

form (neglecting mode competition)

AE - BE 3 (ii)

The term in "A" is the linear approximation (polarization proportional

to electric field intensity) result. The term in B arises from the saturating

effect of the electromagnetic field upon the population inversion of the active

medium which produces the gain. The strength of the steady state field can

be obtained from Eqs:. (6, Ii) as

BE 2 = A - _/eQ (12)

Hence the output is proportional to the difference between the unsaturated

gain and the loss.

The significance of the scattering term should now be somewhat clearer. In

the amplitude equations_ the effects of the scattered energy is to increase

or decrease the gain_ depending on the phase of the scattered energy. In

the frequency equations_ the effect of the scattered energy is to introduce

additional frequency pulling effects. It should be noted that these effects

are not necessarily time independent_ due to the presence of _. It should

also be noted_ that in addition to coupling effects produced by the induced

polarization of the active medium (gain and dispersion) which have not yet

been explicitly written_ backscattering produces a coupling between the oppositely

directed beams_ while forward scattering does not.

Consider the special case where the only scattering is forward scattering

into beam "one".

Then r I = _2 = s2 = O_ sI _ O_ and Eqs. (6_9) become_ for steady state

_ __s_sSl E cos 81 (13)2Q E1 = (Gain) l 26 i
o
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beam "one" will be shlfte_ in phase_ per pass_ by the angle _i" Due to this

additional phase shift per pass, the frequancy of the radiation generated by

the system will be reduced, such that the net phase shift per pass is still

equal to 2m_. The reduction in frequency can be obtained from

(_i = /k_/pass = -ZkUI (t/pass) (17)

where the time for the radiation to make one pass is (L/C).

3_ for sI << i_

From Figure

_i = Sl sin 81 (18)

and Eqs. (_, 18) give

C

Z_ I = -_ sI sin 81 (19)

Equation (19) is the physical interpretation of the formally derived self-

consistent Equation (15). Comparing the two equations gives

a C
= _ (20)

2¢
o

Note that Figure 3 is also consistant with the self-consistent amplitude

equation, given by Equation (13). In Equation (13) the "gain" term is of the

form

AE I - BEI3 , A, B>O, (21)

as w_ll be shown from the quantum mechanical calculations. This shows that

the output intensity in the presence of forward scattering is of the form

2 _ C

BE I = A - _Q L Sl cos 51 (22)

Thus when the forward scattered radiation is in phase with the cavity oscillation,

the energy generated by the atoms is reduced. This is consistent with Figure 3.
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_--_E2 --(Cain)2

_I - Wl =_e ° sI sin 81

(14)

(15)

ne - _2 = o (16)

In this special case there is no coupling and Figs (14, 16) give the oscillation

conditions for beam "two"; gain-equals loss at frequency of oscillation and

in the absence of dispersive effects due to the medium, the frequency of

oscillation occurs at the cavity frequency. Eqs_ (13, 15) show the effects

of scattering on the amplitude and frequency of beam "one".

Refer to Figure 3.

Figure 3. Phase Space Vector Diagram of Oscillation Condition

In the absence of scattering the intensity of beam "one" is represented, on

a frame _n phase space rotating with the frequency of oscillation of beam

"one" equal to the cavity frequency _I' by the factor El.. The effect of the

forward scattering is the addition per pass of a vector of length SlE I with

an additional phase angle 51 • From Figure _, the resultant radiation of

!
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Fig. 4 shows the phase space vector diagram for the case of pure back

scattering. For the case of the frequencies of the oppositely directed

waves being different, $ is a function of time and the vector E2 rotates

about vector E 1 at the beat frequency rate. Likewise the back scattered

vector r2E 2 rotates about the vector E 1 at the beat frequency rate. The

net traveling wave field in the cavity at any instant of time is the vector

sum of the field produced by stimulated emission and the field arising from

back scattering. If forward scattered energy is also present, the resultant

field is a simple superposition of all the fields present. For example Eqs.

(6, ii) can be written in the form

BEI 2 _ ' i, ....= AE I -'_-_E I - _- ._.cos51..- _ r2E 2 cos (_/ + ¢2) (23)
o o

The first two terms on the right hand side of Eq= (23) represent the difference

between the unsaturacted gain and the losses of the system. If the scattered

fields are in phase with the stimulated field

8,_ _/ + ¢2 = O,

•hen the amount of energy that must be produced by stimulated emission to

made up the lajaes of the system, is reduced. This is seen in Eq. (23),
2

where BE I represents the stimulated emission term. Hence scattered radiation

in phase with stimulated radiation results in an effective increase in the

losses of the system in the sense that increases losses result in decreased

stimulated emission.

!
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i 5. FREQUENCY SYNCHRONIZATION (LOCK-IN)

I

I

The effect of backscattering has been shown to result in a time dependent

pulling of the frequencies of oscillation of the oppositely directe traveling

waves. An expression for the frequency difference between the oppositely

directed traveling waves can be obtained by subtracting Eqs. (8, 9) and

making use of Eq. (i0) to write

i _ =_2- _i + (c/L)[s I sin 51 -

!

I
where

s2 sin 62] +

(c/L) [p2 sin (_ + ¢2 ) + Pl sin (_ - ¢1)], (24)

I
P2 = r2E2/EI ' Pl = rlEI/E2 (25)

I
I

I

The first term on the right hand side of Eq. (24) is the difference between

the cavity frequencies of the oppositely directed traveling waves. This

term is proportional to the angular velocity of the rotating frame, upon

which the cavity is located, and includes the mode pulling terms arising from

the dispersion of the active medium.

I

I

I

I

I

The second term is a frequency bias resulting from differentia_]f_ard

scattering. It produces a beat frequency between the oppositely directed

traveling waves in the absence of any rotations of the cavity frame,

Thistermi_riS_:sd_e:to forward sca_te_ing:produd:ing:_a:_ha:ng_'_i:_: :' _h_

in the optical length of the cavity for both of the traveling waves. If

the length change is different for each of the beams, a frequency difference

results.

The third term is a time dependent frequency bias resulting from _utual

coupling between the traveling waves due to backscattering. Eq. (2_) can

be put in the form

I =Z_ +Z_ bias +Z_Qlock cos (_-B), (26)

!
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2Eqbias = (c/L) [s I sin gI - _2 sin 82] ,

= ]1/2z::_lock. (c/L) [pl 2 + P22 + 2Pl P2 cos (e I + e2)

(r 2 12/rll I) cos e2 + cos e 1

tan _ =(r 2 ljrlll ) sin e2 - sin e_

In Eq. (27)_ II and 12 are the intensities of the traveling waves_ as

measured in the cavity.

Equation (25) is the lock-in equation and is analyzed in Appendix B.

has the property that for

(26)

(27)

It

(Z_] +/_i2bias )_ z_,-21ock

the beat frequency is given by

= (Z_Q + LEqbias )

for

(f_ + _]bias )< f_]lock,

the beat frequency becomesaa constant_ independent of time. For this case

the frequencies are said to be locked together• At all points above the

lock in region the actual beat frequency is less than the beat frequency

in the absence of backscattering and is given by

2 1//2
1; -- [(z_ + Z_bias) - _21ock] (28)

Figure $5 shows a plot of the beat frequency in the absence of backscatter

and the reduced beat frequency due to backscatter and lock in

I
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6. QUANTUM MECHANICAL DERIVATION OF POLARIZATION

The second part of the self-consistant treatment is now carried out. The

electric field intensity is now assumed known and from it the polarization

of the medium is calculated. Knowledge of the polarization allows the cal-

culation of the lineshape of the atomic maser transition and hence such

quantities as intensities of the oppositely directed beams and frequency

pulling effects.

The self-consistant method will be carried out in two steps.. As indicated

in Fig I the effects of scattering indirectly affect the polarization in

the sense that the scattering determines the electromagnetic field in the

cavity. In the first step only the two oppositely directed traveling waves.

as given in Eq_A_O) will be used to determine the polarization of the atoms.

Then the effects of scattering will be considered to calculate a correction

to the polarization.

Consider an ideal two excited level system. Atoms are excited toveither of

levels _ or b (Energy _Wa > _Wb) at some time to . The atom can decay

spontaneously at rate 7a _ 7b respective!yj or due to the presence of the

rediation field, undergo a stimulated transition. For oscillation to occur,

it is assumed that a population inversion exists. Expanding the state of the

atomic system in terms of the unperturbed set of states of the atom_ here

taken as only levels _ and b, the equation of motion for the expansion

coefficients is _' I_

• _ (r + pr),p =- iEH, 9] -E P (eg)

where

t

= / aa"X"P
ba_- ab/ (0 0ab) 3o

bb_ Pba Pbb

W a
Vba

I•r(ao1
W_ ] 0 7b

(31)
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The matrix element between states a and b of the interaction is given as

_Vab(t) = - _ab E(z,v,t) (32)

where _ab is the matrix element of the electric dipole moment taken

between states a and b and E.(z_v_t) is the electric field as seen by the

atom. It is this point in which the formalism differs_from that as

presented by Lamb. :3 Since the atom is described in ±ts own Lorentz

frame_ the atom always remains at the point where it was excited.

Collisions are neglected. Thus p is characterized by the following

parameters: t and z_ defined in the moving frame; v_ the axial velocity
o

components of the atom with =espect to the cavity; _ = a, b_ the state to which

the atom was initially excited at time to] t_ the time at which we wish to ob-

serve the system. Since the atoms are of thermal velocity_ simple Galilean

transformations are used so that atom time is simultaneous with cavity time

and atoms in all frames see the same cavity length. The p which describe_

the total ensemble of atoms excited to either state at position a, having velocity

component v is written as

t

dt ° kc _ (tb, z,v ) p(OGto, ,v,t) 5(Z-Zo) (33)

_00
_=a, b

where _(to, Z,V ) is the rate per unit volume of exciting atoms having

velocity component v_ to state _ at position z_ at time to. Equation (33)

contains a trivial integration containing a delta function over all the initial

excitation points for the velocity ensemble. This occurs because the inter-

action is treated in the stationary atom frame.

The cavity field as given by Equations (AIO-AI2 , A21-A23) in Appendix I is seen by an

atom at time t and at position z in a moving frame as

E(z3v_t) {Wln(i + v/c)t +"q_l.rl)i_b_n c_:( _2n_';_i V/'e)t +

i

1 •
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! 2nSin(°2nIv ct 2nllVnZl
J J

!

!

(34)

The coordinate system has been chosen as to arbitrarily cause the velocity

ensemble to see the traveling wave Eln and E2n as being doppler shifted up

and down_ respectively. The K n in the ECNME are still given by Equation

(AI3) as L_rn/L.

! The contribution to the polarization by the moving atoms at position z is

! P (z,v_t) = _baP(Z_V_t ) + c.c . (35)

!

!

! L
\ (v,t)=,oI-,I,_oj

! o

!

!
!

The Fourier components of the polarization due to all the atoms in the

velocity ensemble located at point z is

L

Pn (v,t) =(2/L) ; e (z_v,t) Un(Z ) dz (36)
o

z,v,¢.; Vn _z) dz (3'7)

The macroscopic Fdurier components of the polarization are obtained by

transforming P (v,t) and _ (v,t) back to the cavity frame and averagingn n

over all velocities. In performing the transformation it is first necessary

to group P (z_v,t) into terms having the form of oppositely directed traveling

waves. The terms will be of the form exp i[_ _ Kz - Win (i _ v/c) t - Pin]"

Thus to make the inverse Lorentz transformation_ it is sufficient to
J

multiply each term by exp{+ i _in t v/clrespectively. This will he more

clearly shown in what follows.

!

!

!

!
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7. CALCULATION OF POLARIZATION FOR SINGLE MODE

The solution of Equation (29) for p(_,to,Z,V,t ) is obtained by treating the

interaction between the radiation field and the atomic system as a pertur-

bation and expanding p(_to, Z_V,t ) in orders of the interaction. This ha_

been done by Lambi3and will not be repeated here.

For a single mode the interaction is obtained from Equations (32, 34) as

(38)

In Equation (38) the distinction between the ECNME and oscillating wave

number has been neglected. The mode subscript on the amplitudes has also

been dropped. Calculating the first-order polarization by evaluating the

integrals in somewhat the same manner as prescribed by Lamb 3 (details

are to be found in Appendix ll_v the conditions on the amplitudes and fre-

quencies of oscillation of th& oppositely directed traveling waves are found

as

E. + i (w/Qi) E i 2 (39)i _ i = _ (W/So) _ A E i _xp - _i

®i =hi- (W/Co)AF (_i), i =l,e (4o)

where

F(_i) = (-_i2)

! o
A = l'ab 2 _(t) / (_Ku)

I _i = (_i- w) / (Ku)

dx exp x2 (41)

(42)

(43)

!
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Scattering effects have not been included here. In writing Equations (39,

40) it has been assumed that the doppler width

Lk0 = 2_(in) 1/2 K u ,

is much larger than the natural width. In Equation (42), N(t) is the

average excitation inversion density.

Equations (39,40) are the standard threshold conditions for independent

oscillation. For the case of a SWOM_ Equations (39, 40) reduce to those

_3
obtained by Lamb.
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8. POPULATION INVERSION

A second order perturbation expansion gives the average population inver-

sion of a given velocity ensemble as (details are in Appendix IV).

AP(v,t) =N (t) W(v) [i - 211L(_I +v/u) - 2121(_2 - v/u)]

where W(v) is the normalized velocity distribution.

(_)

The dimensionless intensity of each beam is

li = iBab 2 Ei 2 / (2_2 7a7b )

The Lorentzian function_(_) is defined as

(45)

(46)

where B is the ratio of the natural to doppler width, or

-- l / (Ku)Tab /Ku = _ £mon
( I, ,'t _

k_fJ

Equation (44) shows the saturating effects of the oscillations on the

unsaturated population inversion. A plot of average population inversion

versus velocity ensemble shows the Gaussian velocity distribution with

two Lorentzian holes "burnt" into the curve. This can better be seen by

writing Equation (44) in the non-normalized form

{ I
-i ,: "

W "'W I -K -

Zk0(v,t) =.. N(t) W(v) i - 2Ii I -_ i(1/2)_nl

L

[- 2z2 1 + (1/2_n

(48)
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I
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I
I

In Equation (48) pulling effects have been neglected and for a first

approximation Ziq = w 2 - w I. Thus the depth of each hole is determined by

the intensity traveling in each direction and the width is equal to the

natural width of the atomic transition. For the case when

0 < f_q<< _ - Wl

the holes are located on opposite sides of the inversion curve. As the

oscillations are tuned through the center of the atomic transition such

that Z/] = w - w I one of the holes is found to be symmetrically placed

on the inversion curve. As this point is passed it is found that both

holes are centered on the same side of the inversion curve. It is in this

region that strong mode competition effects are expected_ although mode

competition effects are present at any point of oscillation. Mode compe-

tition is a maximum when the two holes completely overlap_ which occurs

when Z_q = 2(w - _i). At this point the two oscillation frequencies w I

and w 2 are symmetrically located about the atomic transition frequency w.

At first sight it is not even obvious that two independent oppositely directed

traveling waves can exist at any frequency. This question will be considered

after the calculation of the third-order Fourier component of polarization_

which will allow calculation of the intensities I I and _.

It should also be noted that Equation (48) gives the v_lidity condition on the

strength of the field such that convergence of the perturbation expansion

oceurs. Physically it says that the relative depth of the hole burnt into the

inversion cur_e is small_ or Ii_ 12<41.

It should also be noted that Equation (48) is what w_uld be calculated using

Lamb's formalism3forthe case of a SWOM if Ziq = 0 and

I i(If = le) TWOM--_ ISW0M

I

I
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9. THIRD-0RDER POLARIZATION

The expression for_ and the details of the calculation of the third-order

Fourier components of the polarization are found in Appendix_. The

expression is similar to that as derived by Lamb_ except for the Lorentzian

operator necessary to transform the polarization contribution of a single

velocity ensemble from the moving atom frame to the cavity frame•

In the "doppler limit" the self-consistent equations can be approximated as

• i i IE 1 +_ (w/Q 2) E 1 = _ (W/Co) _ A E 1 Z i (_l)/Zi(O) -
L

- II exp (-_i 2) - 12 exp (-_2 2) £(_)I

(49)

E2" +51 (00/Q2) E2 =_I (W/Co) _ A E2 [Z i (_2)/Zi(O)

- 12 exp (-_2 2) - II exp (-_12)£(_)]
2

(50)

(51)

(w2 +_2 - n2) 1 " [ ]= _(W,/¢O) A Zr (_2) + I 1 (_/q)_(_) Z i (_1) (52)

where Z and Z. are the real and imaginary parts of the "plasma dispersion
r l

function"_ as defined in Appendix C.

13

For the case of a SWOM_ Equations (49-52) reduce to those derived by Lamb_

except for the added exponential factor exp (-_i 2) next to each dimensionless

intensity factor I.. As shown in AppendixEs, the exponential factor arises
i

from the evaluation of the integrals without the delta function approximation.

The physical significance in being able to insert or omit the exponential

factor arises in the criteria for the validity of the perturbation expansion.

The exponential factor becomes significant for large _i' or for operation

"away" from the center frequency of the atomic transition. This implies a

gain/loss value such that as the oscillation frequency is tuned through the

I
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14
doppler center, the depth of the hole will be great enough such as to invalidate

the perturbation expansion. Hence, the solution is expected to be most valid

in the region where the exponential differs little from unity. However, when

the effect of multipleisotopes upon the operation of the system is considered

it will be essential t9 keep the exponential factor.

From a study of the form of the interaction which leads to Equation ($9,52)

it is seen that the dominant contribution to the polarization occurs when

the accumulated doppler phase shift cancels. This corresponds to the case

of pure inhomogeneous broadening and the third order contribution to Equations

(_9-52) contain only this dominant part of the interaction. The_hird order

polarization occurs due to the atom undergoing three stimulated interactions

with the net radiation field at times t"'<t"_t'. The choice of with which

traveling wave the atom interacts, is not arbitrary. From the form of Equations

(E6) it is seen that for the dominant contribution to the polarization, the

atoms first two interactions are with the same traveling wave, while the third

interaction may be with either of the two traveling waves. This order of

interaction also applies for the case of SWOM.

For the case of broadening somewhat between pure inhomogeneous and pure

homogeneous, contributions to the polarization can occur when the accumulated

doppler phase shifts are not zero. Some of these contributions have been

evaluated in Appendix E, although they have not been included in the self-

consistent Equations (_9-52)_ and have been shown to be of higher order

in the parameter (natural width/doppler width).

I
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I0. SELF-CONSISTANT EQUATIONS

TWO ISOTOPE CASE

Consider the addition of a second isotope to the system such that the ratio of

atoms of each type is f/(l - f). Let primes signify quantities pertaining to

the second isotope. Refer to Figure 6 for a diagram_t_£c definition of the

variables. Then the excitation inversion density for each velocity ensemble is

N(z,v,t) = f N (z_t) W (v) + (I - f) N(z,t) W ' (v) (53)

In analogous fashion to the single isotope case_ the self-consistency amplitude

equations, correct to the third order, are found to be

E
i = i I" [ 12)i +_ (W/Ql) El _ (W/Co) _'_A E 1 f exp (-_i 2) - II exp (-_ -

-12 exp (-_22)_(_)] + (m'/m) I/2 "(I- f)[ exp (-_'12) -

-I 1 exp (-_12)-I2 exp (___2),,_ (rg,-)]] (54)

['i" 1
E2 +g (_/Q2) E2 = i (W/Co) _A E 1 f exp (-g22) - 12 exp (-g22) -

(-_12)I(_)] + (m'/m)1/2 (i- f)[ exp (__2) _II exp
J l

-12 exp (-_2)- I I exp (-gie)_(g')]l (55)

The ratio of the masses of the two isotopes arises from the difference in

doppler widths for each isotope. Comparing Equations (54_55) to the amplitude

equations for the single isotope3 it is seen that the equation could easily

be generalized for any number of isotopes. Likewise_ the frequency equations

can be written by inspection of the equations for_he Single i_ot'ope cas_ as
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(_e + me - _e) =

(57)_]

The average population inversion as a function of velocity ensemble is obtained

to second order as

Z_(v_t) = f N(t)W(V)[i- 2111(_ I +v/u)- 212£(_2 - v/u)] +
(_8)

+ (i - f) N(t) W'(v) 1 211£.(_ 2I_(_

For the single isotope_ the population inversion curve versus velocity ensemble

and the gain curve versus frequency are quite similar in shape (the hole width

in the gain curve is twice_ in comparable units_ the hole width in the population

inversion curve) and it is easy to confuse the meaning of each. For the two

isotope case_ the curves are radically different. From Equation (58) the

population inversion curve is composed of two velocity distribution functions_

each located symmetrically about the v = 0 axis. The two holes burnt into

each curve are of different depth and are located at different distances from

the v = O axis. There is no significance to the superposition of the two curves.

The gain curve is obtained from the right-hand sides of Equations (54_55)_

although strictly speaking the amplitude equations only give the condition

that gain equals loss, at the frequency of oscillation. It is the interpretation

of the equations that determines gain at a frequency other than the frequency

of oscillation. In addition, for a TWOM located on a rotating frame_ the gain

profile versus frequency in the presence of oscillations at a fixed frequency

is different for radiation traveling in different directions. As an illustration_

consider the gain profile from the point of view of radiation traveling in the

same direction as the radiation oscillating at _2_. See Figure 6a. Then

at w 2 there will be two holes_ one in each of the single isotope Gaussian gain

profiles. The holes due to the radiation oscillating at e I will burn image

holes at -_i and -_i _ respectively. From the Lorentzian functions in

Equations (54_55)_ it is seen that the width of the holes burnt into the

gain cur_e is twice the width of the holes burnt into the population inversion

curve. In the plot of gain versus frequency of oscillation the superposition

of the gain profiles of the individual isotopes gives the resultant gain curve.
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GAIN

(A)

LOSS LINE

(i'

wI w2

(p)

FREQUENCY

t GAIN

\LOSS LINE.

/ .
w 1 w2 _ w' FREQUENCY

6 - (A) The gain profile for a test signal traveling in

the same direction as the radiation oscillating at

w2 ' for two isotopes having relative concentrations
of f and f'. The resultant gain curve is a

superposition of the single isotope gain curves.

(B) The Gain Profile for a test signal traveling in
the same direction as the radiation oscillating at Wl"
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Thus in Figure 6a_i_here will be three holes burnt into the resultant gain

curve. At the frequency of oscillation_ the gain equals loss condition will

be satisfied by the hole being burnt into the resultant gain curve down to the

loss line. As the frequency of oscillation is tuned across the atomic transi-

tion_ the depths of the holes burnt into the single isotope gain profiles will

vary as determined by Equations (5_55) such as to always maintain the

gain equals loss condition at the frequency of oscillation in the resultant gain

profile. If the gain profile is considered from the point of view of radiation

traveling in the opposite direction (same direction as radiation oscillating

at Wl) then the hole burnt into the resultant gain curve will satisfy the gain

equals loss condition at frequency w I. See Figure 6b. The image holes

will now correspond to the radiation oscillating at frequency w 2.

It is interesting to note that the above interpretation of the gain profile as

a function of frequency and both the amplitude equations and frequency

equations can be obtained using Bennets 14 "hole burning"_m0del. The width

of the holes are taken as twice the natural width and the partial depth

only due to the radiation which causes the burning of each hole_ is given as

the dimensionless intensity multiplied by the gain at the point where the

hole is burnt. The total hole burnt into each single isotope curve includes

the contribution due to the Lorentzian tail of the image ho_e. It should be

noted that_ as shown by Appendix E and the discussion in Section 9_ Bennets

'_hole burning" model is valid only in the "doppler limit". When the natural

width is comparable with the doppler width_ as in the 3.39 micron neon transition_

the broadening is neither pure homogeneous nor pure inhomogeneous and to obtain

the saturated gain profile it is nec_sary to carry out the analysis as done

in Appendix E_

!
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I

ii. SELF-CONSISTANT EQUATIONS WITH BACKSCATTERING

The self-consistant equations have been found in section i0 to be of the form

(taking the single isotope case for the "doppler limit").

(-{l2) - I1 exp (-_i 2) - 12

• [ (-_2 2)i W = _ _ A E2 exp - 12 exp (-_2 2)E1 + _22 E2 2¢0

• [ ]w

I Wl o

% _,/_t +(_I_ _i(_I_(_i

- I 1

(59)

(60)

(61)

(68)

I

I

I
I

Referring to Section .4 for the effects of backscatter, it is seen that the

effects of forward scattering do not change the £.orm of the above self=i:....

consis_a_t .equations and: need _o_: :hejwri,tten, exp:l-i'citrl_,_1._He ,forwar@:Tsc_t_ering

amplitude: term oar£_he :lumped] with: ,the"19s_: cter_n_h_,'le:_theufdr_a_d _scat _'e_ing

frequency term caDz:be: l.umped:.wi'th: the passive cavity frequency term.

Before including the backscattering term_ it is preferable to express the

constants in the self-consistant equations in terms of easily measurable

quantities. The Q of the cavity is defined as

I

I

I

i

I

e_ (63)Q = k-T. '

where k is the transition wavelength, L the length of the cavity and 7 the "li'

fractional loss per'pa_h.,'hThen

! _-c__7 (64)
2Q 2L

At threshold where the field in the cavity is zero and at line center where

=01 Eq. (59) gives (E =0 and s-2nce. A is proportional to population inversion),
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= _ ct) _ A "- (65)
2Q 2e t

o

But since A_ ....is..the_ population inversion where the fraction gain/pass G is equal

to the fractional loss/pass 7, then

and

A G

Xt = _ , (66)

But from Eqs (64,65), Eq. (67) becomes

w____ _-_ A _ c2¢ 2-ZC (68)
o

Now the self-constant equations in the presence of scattering become

2L E1 '

Eq = °tl - _I Ii - _@12 12 - 2Q-_ cos (% + ¢2) , (69)

2L E2

._ E?, _2 82 12 e21 XI 2P I cos (_/ -el) , (70)

W.l-+ %°-1- f_l = (;i + _12 12 - _ g2 sin (_/ + ¢2) ,

w2 +¢2 - n_ =ce +T21 zl - _ Pl sin (el--- #) ,

(71)

(72)

where

_i : G exp (-_.i2) - 71 - 2SI cos 51

i = G exp (-_I e)

el2 = exp (-_2 2) _(_)

(73)

(74)

(75)

P2 : rE E2/E:I (76)
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I
I

I

ni_ = _i " _ Sl sin 51

c G )/)at =__r (gt

Tie = e-i'L-.. I

i _i = (_t

l
I

= _ (_l + _e)

[

I
!
!

!

- _)/Ku

Ku=_doJ2(l.mi/2

q = 7a_KU =ILk0 (natural) +Z_ (collision)] /2Ku

_. (_)=_ exp(__)2
"I .

Z (_) = -2 F (_) + 2_B exp (__2) + 0(_2)
r

F (_) = exp (__2) exp (x2) dx = _ I - 7 +
o" t

o(_4)-[ _ < 1+

]

! The definitions of _2_ _2 etc. are analogous.

!

i

!

!

!

B <<i

(77)

(78)

(79)

(80)

(81)

(8.2)

(83)

(8_)

(85)

(86)

!
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12. BACKSCATTER CORECTION TO POLARIZATION

Figure (i) shows a block diagram of the self-conistant treatment. There it

is seen that an assumed elechromagnetic Tield in the cavity produces the

scattering source terms and polarizes the atoms. The microscopic polarization

and the scattering terms are then treated as source terms in Maxwell's

equations to calculate an electromagnetic field. This calculated field must

equal the original assumed field for self conisitancy.

In calculating the polarization in section 6 only two oppositely directed

traveling waves were taken as the assumed field• Now a correction bo the

polarization will be calculated by assuming that steady state backscattering

fields also exist in the cavity. The form of the backscattered fields _re similar

_th_seused for the source terms in Maxwell's equations. They are represented

in Fig (2). Using this correction field_ a calculation of the first order

polarization is carried out in Appendix F.

The results show the first order self-consistant equations (59-62) to be

modified to read

E1 + _w__w_E
2Q I I =-wA2eo[El Di (_i) + r2 E2 [ Zi (_2) cos (_ + ,2) -

-Dr (_2) sin(_ + '2)] ]
(87)

• [E2 wA
E2 + 2Q2 = _ E2 Zi (_2) + rl EI[Di (_I) cos (_ - ,i) +

+ Dm (88)
.I

, wA [E_Z

(_I+ _I - hi) E1 --_o[ l r(_I)+ r2 E2[Dr (_2)cos(_ +c_2) +
(_)

+ Zi (_2) sin (_I + ,2)] j

_ wA [EZ r Eli Dr (:1) cos (_ - ,1) "(_2+ _2 -n2 ) E2 - _o[ _ r (_2) + .1

- D i (_1) sin (# - '1 ) ] 1

(90)

J

I
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I

I

I

I

The modified self-consistant equations (87-9_ show additional terms linear

in the backscattering coefficients rl,r 2. These terms are multiplied by

factors of cos $ and sin _ and are of the form of mode coupling terms in the

amplitude equations and frequency pulling terms which lead to lock-in in

the frequency equations. When the backscattering effects obtained by

considering scattering as a source term in Maxwell's equations are also

considered_ _he self-consistant equations become [combining Eqs. (87-90)

with Eqs. (69-72)] equivalent to Eqs. (69-72) with the following changes:

I G2 :z 2 2 (_2)]]1/2P2'" _2[ 1 -_ "i (_2)+'_[ i (_2) + :r

G _i(_2)
I ¢2 "" e2 - tanl

I There are analogous equations for the 6_a_ge _'6, Pl and eI .

(gt)

(92)

I
I

I

For small values of gain _e G N .l; Eqs (91,92) can be approximated as

P2 "' P2 (1 - _Ze., ); (93)

G __2

¢2 "* s2 - _ e (94)

I

I

I
I
I

I

I
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13. GAIN DEPENDENCE OF LOCK-IN

From Eq. (26) the expression for the lock-in frequency is given by "

=c[ pl 2_lock L + P2 2 + 2Pl P2 cos (e I +.¢2)]1/2

Making the gain correetion_ as given by Eqs. (93,94), Eq. 26 becomes

c [912 _ _g21]1/2 (1 - -_e-g2)_lock = _ + P2 2 + 2P:lP2 cos (e I + ¢2 Ge

(26)

(95)

Thus fire gain dep_nden't part'dr the lock2_in_ t_res_61& '.shouid'be a_n even

f_=c_ion o_ tuning _e:frequency::of oscillation'acr0ss'the dDpplergain :

d:urve_ _ith a m_mmum at the doppler center.

Equation (95) hol_sin the limit of small gain.
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14. ANALYSIS OF MODE COMPETITION EQUATIONS

The Eqs. (69,70), determining the intensities of the oppostiely directed

traveling waves are two simultaneous non-linear coupled first order differential

equations in thettwo unknowns Ii, 12 . The intensity I is related to the

electric field intensity E by

I = (const) E 2

Defining a normalized electric field intensity so that

I --E2 (96)

the mode competition equations for steady state oscillation can be written

in the form

3 EIEI 2 - R2E 2 = 0 ,GIEI - BIE 1 - 812 (97)

I _2E2 - B2E23 - @21E2EI 2 - RIEI = 0 (98)

I

I

I

I

where the coefficients are, for a single isotope and no a_ymetry

_i = (G/71) exp (-_i 2) - I (99)

61 = (G/71) exp (-_i 2) (i00)

012 = (G/Y1) exp (-_22) _(_-) (i01)

R2 = (2rJTl) cos (4 + ¢2) (102)

I Similar equations exist for the other coefficients.

I

1

I

In analyizing Eqs. (97, 98), R will be assumed to be consistant (independent

of e). The justification for this assumption will be discussed after a

discussion of the experimental results. Eq. (97, 98) are a pair of coupled

cubic equations. Thus nine sets of solutions for El, E2 exist. One is the

null solution and since the equations are odd in E, for each set of solutions

(El, E2) , (-El, -E2) is also a solution. Thus only four sets of solutions

I
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need be found.

The technique to be used is to write

E 1 : x E 2 , (103)

substitute Eqs. (103) into both equations (97,98) and solve each f0r_:E2: to

obtain

2 _i x - R2 _2 - RI x

E 2 81x3+_12 x 82 + e21x 2 (104)

Equation (104) gives a quartic equation for the unknown quantity x_ which can

be written as

RIll x4 + (821_ I - _81)x 3

/& - _2R2 = 0

2

+ (RI@I2 - R2@21)x

(lO5)

+ (B2_I -el2_2)x

As the frequency of oscillation is tuned the parametemwill vary_ as given by

Eqs. (99- 102). Thus the mode competition equations should be numerically

solved by solving the quartic equation (iO5), for each value of frequency,

on a high speed computor. This was done on the HoneYwell 18OO and typical

results for intensities Ii_ 12 (when R I = 2R2) _ are shown in Figs (7_ 8).

It should be emphasized that the only collision effect that has been considered

here has been a widening of the hole width.15pressure effects in general

will be considered after a discussion of the experimental data.

Figs. (7_ 8) show the intensities Ii_ 12_ respectively. In both figures_

cur_e_'"a '' shows the intensity in the absence of back scattering effects. Thai

power tuning curves show the characteristic Lamb dip around the _doppler)

center frequency. Curves b_ccorrespond to the four possible solutions. It

should be noted that the intensities are complementary for the oppositely

directed traveling waves. Solution"b" corresponds to the case when I1 is

extinguished over most of the doppler curve. At the center the beam turns on

over a range of a few MHz. The complementary solution for 12 shows a value

of 12 with no competition effects due to the presence of I1 over most of the

!
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doppler curve. At the center a sharp downward spike occurs_ due to the presence

of beam II.

Curves "c" and "d" show the existance of solutions for I I and 12 which differ

only slightly from the non-backscatter solution over most of the doppler curve.

At the doppler center_ curve "c" shows a competition dip which occurs in the

opposite direction to that found in solution '_a". At the doppler center no

solution exists corresponding to curve "d". The roots of the quartic equation

are complex in this region.

Curve "e" corresponds to the solution for which beam I1 takes over completly and

beam 12 is essentially extinguished° This solution corresponds to the second

of the complex roots of the quartic equation. Thus it is possible for either

beam to be extinguished.

Whether or not the solutions are all stable is another question that must be

answered. A Poincoire analysis was carried out for the case shown in

figs (7_ 8). The results showed that all the solutions are stable. It should

be emphasized at this point that the case being considered is ideal in that

collision effects and differential losses have not been considered.

To set a better understanding of the solutions of the mode competition equations_

a qual_tative description of the quartic equation will be made. For symplicity_

equal losses for both directions will be assumed and the beams will be assumed

to be frequency locked. Then Eq. (105) reduces to

2
RIX4 - c_(l -£) x 3 +£(R I - R2) x + c_(l -_) x - R2 : O (106)

For the non-backscattering case_ R I = E 2 = O and Eq. (106) gives x = O, _ i.

From Eq. (104)_ the solution corresponding to x = 0 is

II = O_ 12 = _ = i - exp _2 (1o7)

This corresponds to solution "b" without the backscatter spike in figs (7_8)

The solution corresponding to X = _ I is



I
I

I
I

I
I

_l : _2 : I1 _!z) exp_2] I1 + =i(_)] -1

This corresponds to solution "a" in figs (7, 8).

Ku

_ : 500 MHz, _ = .155 was chosen, where

(_-_,d)
= Ku '

(lO8)

A value of G/7 = 1.24,

(109)

_,_(_) : [ I + _2/q2]-i . (110)

To consider the effects of backscatter, let

I R2 ffiK R I , K<I (iii)

I
I
I

I

I
I

Note that the results for the case of R_> R I can be obtained from the R2<R 1

case by interchanging the subscripts "one" and "two" and letting K - I/K.

In Figs ( 7, 8 ), K = 0.5.

Using Eq. (Iii), Eq. (106) becomes with R I - R

x - _ (i -2) x3 + i( I - K)x2 +_ (i -i)x - K = O (112)

Consider the solution of Eq (I12) at the doppler center. From Eqs (109,

iiO), the doppler center corresponds to _ = O and _ffi I. Eq (Iii) becomes

4 x2x +(i- K) - K--O

or '(n3)

I x :__+_, +i

I

I

i

I

I

Thus at the doppler center two of the solutions are complex. This corresponds

to solutions "d" and "e". Solutions "b" and "c" are equal and the intensities

are related, as seen from Eq. (I03), by

II : K 12 (114)

Note that Eq. (114) is only approximately satifified in figs (7, 8) since the

curves were not calculated for a single isotope. The isotopic impurity was

taken to be IO-4_ but this impurity is sufficient to restore the odd terms in

x in Eq (i12).
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Using DeMoivre's theorem to determine the sign of the roots of Eq. (I12)_ it is

found that there are, at most_ three positive roots and at most one negative

root. Euqation (114) shows that there exists a negative root and that the

root corresponds to either curve "b" or "c". Equation (114) also shows that

as the scattering becomes highly assymetric (K-O) the spike amplitude in

solution "b" drops to zero and the dip amplitude in solution "c" increases. In

both cases intensity I I drops to zero. The solutions for 12 are again complemen-

tary. Thus the relative strengths of the competition spikes are independent

of the absolute scattering into each direction. Again it should be emphasized

that this relation holds only in the limit of a single isotope.

Again consider the case of assymetric scattering_ or K = O. Equation (112)

then becomes

x ix3 -=_(1-_)x2 +_x +_ (1-2)I =o (i15)

The x = O root corresponds to

I1 = O

and from Eq (107)

12 = i - _ exp _2.

At the doppler center, the cubic equation (115) has two complex roots and

another root of x=O. This x=O root corresponds to the minimum intensity 11

of curve "c" being zero. For frequencies slightly off the doppler center,

x_ 0 and i -_.+%n_ _ O Thus an approximate root of Eq (115) corresponding

to this case is obtained as

R

or (G - _) _2 "(ii6)
X --'----

2
7Rn

Thus curve "c" corresponds to the negative root.

I
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15. COMPUTOR SOLUTIONS OF MODE COMPETITION EQUATIONS

Figures (7,8) show the four possible solutions for the intensities Ii, 12,

respectively. The parameters used were those for the neon-20 transition

(99.99 percent isotopic purity). The doppler width was taken as 8OOMHz

(Kn = 500 MHz corresponding to a temperature of 413°K. The gain/loss

ratio was taken to be 1.24 for both beams. The pressure used was 3 =orr

giving a value of _ = O.158. The backscattering parameters were chosen as

R I = 10-4 , K = 0.5.

In Figs (7_8) and in those that follow_ _he _nly effect of collisions that

15
is considered is the broadening of the hole. Assymetry due to phase shift

15
effects and the reduction in the hole depth due to velocity shift effects

have not been considered. These effects will be considered in a later section.

Figure (i0) shows the effect of varying the pressure and hence the hole width.

Only intensity I I is shown and only (half) the center region is shown.

The intensity curves are even functions about the doppler center and the

curves for 12 are complementary to those shown for II. It is seen that as

the pressure increases from 1-7 torr_ the half range over which two of the

solutions are imaginary increases from approximately 1-5.5 MHz. In addition

it is seen that both the width of the dip and the center spike increases.

However the depth of both the spike and the dip remains constant. These

results have been summarized in Fig (ii) which shows the values of the various

widths as a function of pressure with the equiv:alent value of _. It is

seen that the widths are approximately a linear function of pressure.

Figs (12_ 13) show the values of the intensity I I at the doppler center for

values of R I = iO-5_ iO_6 respectively. Pressure is included as a parameter.

The results show that for decreasing values of scattering_ the competition

widths decrease, roughly as the square root of the scattering.

Figures (14, 15) show the intensity II for varying values of K (the ratio of

the backscattering coefficients) for values of R = 10-4 , i0-3_ respectively.
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The hole width chosen corresponds to a pressure of 3 torr. The results s_c_- ..... -

agreement with R I/2 width d_ependence rule_ and show that the rule II = KI2_

K< 1_ at the doppler center is more nearly satisfied for larger values of R.

In all the curves shown_ the gain/loss ratio has been_made equal for both

beams. Figures (16, 17) show the zero backscatter solutions for the intensities

I_, 12, respectively_ for zero pressure and a differential gain/loss ratio_o

It is see n that for increasing values of the differential gain/loss _ the :

frequency range over which mode competition occurs_ increases. For large values

of differential gain/loss (_IO-4)_ the beam discriminated against (Ii) is

shown to be extinguished_ 7 Figures (18r21) show intensity II for both backscatter

(R I _ 10 -4 ) and differential gain/loss (_ I0-4_ + 10-5). The pressure is

3 tort and the scattering ratioL K is a parameter. It is seen that for the

value of the backscattering chosen the backscattering competition dominates.

Also the dip acts in the same manner as the zero-backscatter solution in the

sense that as the losses favor beam 12, the intensity_l I dips towards

zero. However_ the spike acts in the opposite sense in that it increases.

The effect is more pronounced for greater differential gain/loss.

i
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16. COLLISION EFFECTS IN THE MODE COMPETITION EQUATIONS

15 o 16
From the w0rkofSzoke,_Javan_ F rk, Pol_ack and others,! it is known_;_<_

that the effects of collisions cannot always be neglected in the analysis of
, 16

the He-Ne laser., In FOrk and Pollacks work mode competition between successive

longitud_inal modes in a linear laser was observed as the two modes were

symetrically spaced about the dopp!er center. Their experimental results

were explained by making two modifications in Lamb's theory. 3 The hole width

was taken to be a linear function of the total pressure of the helium and

neon. The gain curve (.imaginary part of the "plasma dispersion function')

was considered to be a linear combination of the gain curve plus the dispersion

curve (_eal part of the plasma dispersion function). The coupling constant

was a linear function of pressure. The mixing of the gain and dispersion

curves produces an assymetric line shape.

Assymetry was taken into account in the mode competition equations (97, 98)

by writing, for the doppler limit and for "low" pressures, (c<<,l),

•exp(-_ 2) - exp(-_ 2) + cF(_) , (i17)

F(_) - F(_)- _ c exp (__2) (118)

From Eq (117)3 the maximum of the gain curve is shifted to

c (119)
_max =

In frequency Units,

_Vshif t = 250 c (MHz) (120)

The pressure shift has been measured as _.2 MHz/tor_Swhich give a value of

c to be

c = 0.02 p IP in torr) (121)

Using the form of assymetry given by Eqs (117, 118), the mode competition

equations i97, 98) were solved for the intensities Ii, 12 • The results for

II are shown in Fig (22). Equation (121) was not used and value of c was

!
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taken as IO "2, 10 -3 , IO _. The pressure (to determine ho_e width) was 3

torr, R I = IO_4_ K = 0_5. The results show the competition spike and dip to

be shifted towards _maxJ but'the shift is much smaller than the shift of the

maximum of the gaiN curve.

When Szoke and Javanl_nvestigated velocity shift effects in a linear laser_

they found that mode competition between the waves traveling in Opposite

directions was reduced. The reduction in competition could be expressed

by replacing the Lorentzian factor in Eqs (97, 98) _intthe standing wave case)

by

*it

!

Both _ and _ are linear functions of pressure and _ _ _'. _ne equality

holds for zero pressure.

The mode competition equations were solved on the computor using the velocity

shift effect given by Eq (122). The results showed no mode competition at

the doppler canter. The solution showed only complete extinction possible

for either beam and complete co-existance. An investigation of the equations

showed that whenever the v_ ._ ^_ _^ma_muu_ value _ .... Lorentzian factor was appreciably

different from unity. The competition at the doppler center disappeared.

A mixture of isotopes will effectively reduce the maximum value of the

Lorentzian function from unity and hence should eliminate the backscattering

mode competition. The equations were run for the case of natural neon and

this was found to be so.
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17. EXPERIMENT - GENERAL DESCRIPTION

The first part of this report presents a theoretical description of a traveling

wave ring laser in the presence of scattering effects. This part will present

the experimental work performed with the aim of showing correlation with the

theoretical model.

To this end the following experimental program was carried out. A ring laser

was built and operated on the neon 1.15 micron transition. Mode competition

between the oppositely directed traveling waves of a single longitudinal

mode was investigated by tuning the frequency of oscillation across the doppler

gain profile and measuring the i_tensities of the beams. The total pressure

of the gas was treated as a parameter. In addition mode competition was

investigated as a function of reflecting a _ortion of one of the transmitted

beams back into the direction of the other.

While the beams were frequency locked changes in the phase difference between

the oppositely directed beams were investigated as a function of tuning the

frequency of oscillation across the doppler gain profile. The phase difference

•,=° also measured as a function of ....._~ _ _ ^ ^=._-_ vaL_LL_ _le _,_=S= _ the back scattered

energy from one of the beams, which was scattered into the direction of the

other beam.

A block diagram of the experimental system is shown in Fig..(23) .
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18. QUARTZ BLOCK RING LASER

The ring laser used in the experiments has been constructed from a single

piece of fused quartz. The holes (4.5 m_u diameter) defin_n_l:_he':laeer paths

were made in the form of an equilateral triangle::- The total path length is

58.9 cm_L giving a longitudinal mode spacing of 509 MHz. Excitation is d.c.

with provision of exciting_ by halves_ a maximum of two legs. _wo of the

mirrors are flat (2/10) and one is curved with a radius of curviture of

3 meters.

The mirrors are coated for operation on the neon 1.15 micron transition.

One of the mirrors has a transmission of 0.62 percent_ while the other two

have a transmission of 0.28 percent. All three have a scattering loss of

O_2 - 0.3 percentkh_he diffraction loss is O.i - 0.2 percent giving a total

loss of 2 percent. Adesizn an_+y_s is,given in A:,,cn_i:: I_. Operation is

restricted to a single transverse mode by means of a 2.2 mmu aperature placed

symetrically with respect to the curved mirror. Visual confirmation was made

of single transverse mode operation by means of an infra,red image converter.

Both beams were observed to b9 linearly polarized in the low reflection loss

plane. Typical current excitation (8 mm_) allowed operation with either one

orttwo longitudinal mode_,depending on the position of the cavity modes with

respect to the doppler gain profile.

The laser was always operated while attached to a vacuum fill station, allowing

the total pressure of a iO_i mixture of He 3 - Ne 20 (99.99_percent) to be

varied. Frequency tuning was accomplished by thermally heating the quartz

block structure as a whole. Tuning could thus be varied in both directions.

For a temperature change of _T_ the cavity length changes by

AL = L _ AT (123)

-7
where (_ = 5.5 x iO /oC (Linear expansion of quartz))

The frequency change due to a change in cavity length AL is

The negative sisn implies that increasing the length causes the frequency

to decrease. For a cavity length increase of i wavelength_
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and the temperature change, e_ for a mode spacing of 5OgMHz, is

AT = --XZ_7_L = 3.6°C (126)

Tuning has been accomplished over five modes with no difficulty.

The thermal time constant of the quartz block has been measured b_ heating

one surface and measuring the time intervals over which successive cavity

modes are tuned across the doppler gain profile. Meausrements indicate a

time constant of 22 - 25 minutes. A rough theoretical estimate of the time

constant of a homogeneous rectangular parallelopiped where one dimension is

much smaller than the others, is

4pCA2 _ 16 min

where

(127)

p - density (_i,;2gm/cm 3)

K - thermal conductivity (3.2 x 10 -3 cal/sec, cm°_)

C- specific heat (0.17 cal/gm°C)

A- thickness of quartz (4.44 cm)

I
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19. ZEEMAN CELL FREQUENCY MONITOR

In operating the laser it appeared desirable to have an instrument which

could directly measure the frequency of oscillation_ rather than rely on

something indirect_ such as power measurements. The measurement of the temperature

of the quartz block would not be conclusive_ since a question could arise as

to the actual response of the cavity length to the temperature at a given

point. In addition_ for tuning over a small frequency range_ there would

be a question as to what point under the doppler curve the frequency is oscillatiag°

To avoid uncertainties of this kind_ it was decided to desigh and build a device

to directly measure the frequency of oscillation. Resolution should be as

good as possible with a minimum resolution of a few MHz. To this end the

Zeeman cell frequency monitQr was designed.

Frequency Monitor

The frequency monitQr operates on the output of one laser gyro beam to determine

the laser operating frequency as defined by the cavity dimensions. Operation

of the frequency monitor is explained with reference to Figure 24. (Further

circuit details are found in Figure 26 and are subsequentLy_explained.) The

linearly polarized light from one laser gyro beam passes through a quarter

wave plate to become circularly polarized. The light then passes through the

absorption (or gain) tube containing a helium-neon mixture operated with a

d.c. discharge. An alternating axial magnetic field is generated by an a.c.

current in the coil surrounding the discharge tube. The laser light passing

through the gain tube is modulated by the axial magnetic field at a modulation

depth which depends on the laser operating frequency relative to the center of

the doppler curve as shown in Figure 25a. Operation at frequencies higher or

lower than the center of the doppler curve is identified by the relative phase

of the modulated light referred to the modulating current. The modulated light

signal is sensed by a lead sulphide detector_ preamplified_ and then demodulated

in a phase sensitive demodulator. The output of the phase sensitive demodulator

is then a typical "discriminator" curve as shown in Figure 25b. From the phase

sensitive demodulator the signal goes to a current amplifier which superposes

a d.c. current in the coil generating the magnetic field. In operation as a

closed loop system the d.c. current take_ on a value such that the d.c. magnetic
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field bias nulls the a.c. signal at the fundamental of the reference _or

modulation) frequency. When the system is operating closed loop in a nulled

condition the magnitude of the d.c. current is a measure of the laser

oscillating frequency. By using closed loop operation_ the frequency measurement

is largely independent of fluctuations in laser intensity_ peak values of the

a.c. magnetic field_ and absorption or gain of the discharge tube.

Further details of the frequency monitor are described with reference to

Figure 26. The discharge tube is 7mm internal diameter and 16.5 inches

long. The active discharge length is 15.5 inches. The coil surrounding the

tube is wound with 12 layers No. 20 copper wire, giving a total of 4450

turns or 318 turns per inch. The d.c. resistance of the coil is 13 ohms_ and

the inductance at 400 cycles is 32 millihenries.

The discharge tube is filled to a pressure of 6.4 torr with a iO;i mixture

of He 3 and Ne 20. The discharge is operated from a high voltage power supply

at a current of iO ma. A 50K ohm resistor in series with the discharge tube

stabilizes the discharge with a 1400 volt drop across the tube.

To isolate the effects of the magnetic field from the laser, the coil is enclosed

in a mu-metal shield.

An infrared-pass filter is located ahead of the detector and serves to reject

the visible light generated by the discharge and the laser. The lead sulphide

cell is operated with a 2215 volt bias and a i megohm load resistor. The

a.c. signal developed across the load resistor is coupled by an O.i mfd cap-

acitor tO the preamplifier.

The preamplifier consists of a Burr-Brown model 1506 solid state operational

amplifier having an open loop gain of 106 db. The amplifier is connected to

give a gain of IOOO in a non-inverting configuration which provides high

impedance input to the lead sulphide cell. A O.OO1 mfd capacitor in parallel

with the feedback resistor produces a roll-off of the frequency response

above the 400 modulation frequency for the purpose of noise rejection. Low

frequencies are rejected by the 1.0 mfd outputs-coupling capacitor.
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The phase sensitive demodulator is a Princeton Applied Research Corporation

model JB-4 having a gain of iO,0OO_ and selectable filtering time constants

from O.OO1 to IO seconds. The input a.c. amplifier in the phase sensitive

demodulation is highly frequency selective with respect to the reference

frequency (400 cps). The second harmonic is rejected by a factor of IOO0.

Second harmonic rejection is highly desirable because a relatively large

second harmonci component (compared to the signal) is produced when the system

is operating in a closed loop condition near null. (Second harmonic signal

content is shown in Figure 25a.).

The d.c. output of the phase sensitive demodulator is of push-pull form_

offset 6 volts below ground. This output is conveniently coupled into the

current amplifier using the Burr Brown modell506 solid state amplifier as a

differential operational amplifier because a common mode voltage up to i0

volts can be tolerated. The current amplifier is designed to operate the

output power transistors in class B operation for maximum efficiency. The

power transistors are selected to operate as a complimentary syn_netry_ NPN-PNP

pair. Operating the high gain amplifier into the output power transistors

effectively reduces the "turn-on" effect (or dead zone) near zero to a negligible

value. The feedback around the high gain operational amplifier is closed

from the power transistor output point. This places the feedback from the load

(current coil) to the amplifier input. The feedback arrangements produces

good linearity in the current amplifier and results in low quiescent current

in the power transistors at null.

Isolation between the a.c. and d.c. current circuits driving the coil is

provided by the 0.075 henry choke and i.O mfd capacitor operated in parallel.

The two elements present a high impedance at 400 cps_ but present a resistance

of only 0.075 ohms to the flow of d.c. current.

The amplifier which drives the a.c. current in the coil_is a Bogen model

MUI30 power amplifier capable of a 30 va output. Its output transformer is

operated with the secondary floating to allow a ground reference to be established

only by the d.c. current amplifier. The common and 16 ohm impedance taps on the

output transformer are used for connection to the current coil. In operation
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the power amplifier del_vers i ampere peak current at 400 cps into the current

coil. The a.c. power amplifier is connected to the c0il in series with a 6 mfd

capacitor. This capacitor series resonates with the coil to match into the

power amplifier impedance. The capacitor also serves to block any d.c.

current into the power amplifier output transformer secondary. The a.c.

and d.c. currents are metered at the respective amplifier outputs.

The oscillator is a Hewlett-Packard model 200 CD. The oscillator output

provides the reference voltage for the phase sensitive demodulator and also

the input signal for the a.c. power amplifier. An oscillator _outp_t setting

of 0.3 volts is adequate to drive the power amplifier through its auxiliary

input. The same oscillator output level is adequate as the reference signal

in the phase sensitive demodulator since adjustment of the reference level can

be made intermal to the demodulator.

The frequency monitor output point shown in Figure 26 goes to the data recording

system. This point appears across the current coil (with a negligible d.c.

drop in the choke) andregisters the d.c. voltage across the coil. This

output voltage is proportional to the d.c. current in the coil_ and is there-

fore a measure of the laser gyro operating frequency.
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20. FREQUENCY MONITOR AND MODE COMPETITION

The amplitudes of both oppositely directed traveling waves were monitored

while the laser was operated with a d.c. discharge currentoof 8-9 m.a. The

detectors were Hoffman EA7 photovoltaic silicQn cells with an infrared-pass

optical filter. The outputs were fed to two microvoltmeters_ a Kintel model

207B and a Keithley Instruments model 610A electronmeter operating as a

microvoltmeter. The microvoltmeters also served as a high gain d.c. amplifier

which allowed the meter output to be recorded directly on a strip chart recorder.

The frequBncy of the laser output was ture'_ by thermally heating the quartz

block structure as a whole. A 3/16 inch thick copper he_l transfer plate in

contact with the bottom surface of the quartz block was warmed or cooled by

circulating water in copper coils soldered to the bottom surface of the

plate. Heating and cooling rate was controlled by selecting the water temperature

and flow rate.

Figure (27) shows a typical amplitude vs frequency scan as monitored on a

four channel strip recorder. The third and fourth channels are recordings of

the counterclockwise and clockwise laser beam intensities. The Kintel meter

monitored the counterclockwise beam intensity. The time consistant of this

meter_ as measured from the laser output, was 0.25 sec. The time constant of

the Keithley meter was at least an order of magnitude faster and thetime response

for the clockwise beam was determined by the recorder itself.

It was possible to monitor the output from each beam from all three mirrors.

One of the output signals from the clockwise beam was fed into the frequency

monitor gain tube. The d.c. closed loop output current from the frequency

monitor is shown recorded in the second channel. The first recorder channel

shows the temperature difference between _e_bbottom_andttop surfaces of the

quartz block. Increasing temperature difference is down. The strip chart

recorder was run at a speed of O.2_ mm/sec. Each mark at the top of the strip

chart corresponds to 75 mm.
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As discussed in section 19_ the d.c. current output from the frequency monitor

is a linear function of the difference between the frequency of oscillation of

the laser and the frequency at which the gain in the Zeeman cell is a maximum.

The operation of the frequency monitor _equ_re_ssingle mode operation. As a

cavity mode is tuned across the doppler gain profile_ the output is a ramp

type function as shown in Fig 27. The sharp jump in the ramp occurs as one

mode on the low frequency side (tuning is accomplished by heating which increases

the cavity length and decreases the oscillation frequency) drops below threshold

and another on the high frequency side comes above threshold. As shown in

Fig 27_ the gain/loss ratio is high enough such that when two adjacent cavity

modes are symetrically spaced about the doppler center_ both are above

threshold.

Figure 27 shows five cavity modes being tuned across the doppler gain profile.

The intensity date shown the characteristic line_rlaser tuning peak around the

doppler center. In addition_ sharp competition regions are found: when one

mode is oscillating near the doppler center and when two modes are symmtrically

spaced about the doppler center.

The cavity mode spacing is 509 MHz. The off center competition spike are rather

sharp (0.3-O.6 MHz) and provide a frequency marker to calibrate the frequency

scale. The competition spikes near the doppler center are 2-3 MHz wide.

As a means of checking the operation of the frequency monitor_ the position of

the peak of the center competition spike was measured by two methods. In

both cases it was assumed that the thermal heating of the quartz block can be

described by one thermal time constant. Three known frequencies can determine

the time constant. In the first case the three frequencies used were three ad-

jacent off center competition spikes.. Fig. (27) shows that there are four off

center competition frequencies_ as three complete modes are scanned across the

doppler gain profile. Thus two time constants were calculated using two groups

of adjacent competition points. The first time constant is used for calculations

involving the first two complete cavity modes while the second is used for the
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second and third modes. The position of the center spike (measured with

respect to the previous off center competition spike) was calculated. The

results are shown in Table I. The spacing between off center spike was chosen

as 509 MHz. In all cases the center spike was on the low frequency side of

one half the mode seperation.

The second method made use of the frequency monitor data. Again three points

were used to determine the time constant. This time the points chosen were

those where the d.c. feedback current was the same over three successive

modes. The currents were chosen at 5 mm intervals. Six time constants were

chosen in each group and averaged. Three groups were used. The incomplete

modes at both ends were able to be used for this type analysis. Using the

averaged time constant in each group_ the position of the center competition spike

was again calculated . They are summarized in Table I. In addition_ using the

frequency monitor data_ the spacing between successive off center competition

spikes was calculated and included in Table I.

From Table I_ it is seen that there is good correspondence between the results

obtained with the power data and those obtained with the frequency monitor data.

Only in the third complete mode is there a discrepancy from the expected results.

This might be due to the fact that the tuning time for the third mode was 15

minutes and the single time constant assumption may not be valid over this

range of the exponential.

An error analysis was made of the expected accuracy in calculating frequency in-

tervals. It was assumed that the dominent error arises from an inability to

exactly read the times at which mode competition occurs. It was assumed that

this error was _ 0.i m and is random for each time interval. This gave

an accuracy for each frequency interval of + 2 MHz. The results in Table I

show correlation to within this error. But with_this error_ the displacement of

the center, competition spike from the midpoint of the two off center competition

spikes, becomes questionable.



-TG-

[

i
I

i
i
I

I
I

I
I

I

I
i

I

21. DETERMINATION OF GAIN/LOSS FROM INTENSITY DATA

As seen from Figs (7,8), the effedts Of small'values ofbacksc_tteringTa_e seen

only at the doppler center. At frequencies away from the center_ the intensities

of the oppositely directed beams are essentially equal. The self consistant

amplitude equations can be used to fit the data in Fig (27) under this condition.

The center competition spike will be neglected here and the intensity curve

will be considered to vary smoothly through the center.

For this case of equal intensities and neglecting backscattering and for the

beams being frequency locked_ Eq. (97) can be solved for the intensity (of either

beam) and is written as

13-_o (le8)

Using the expressions for the coefficients as given by Eqs. (99-101), Eq. (128)

becomes

i -°l,l-i exp _2

1 + _:t.[_Y (leg)

where°_is the ratio of gain/loss.

From the date in Fig (27)_ it is seen that _is large enough such that there is

at least one longitudinal mode above threshold at all frequencies. Since the

mode spacing is 509 MHz_ a lower bound can be placed on_. Taking the doppler

width as Ku = 500 MHz_ Eq. (129) gives, for I = O,

_min = exp [(509/2) /500] 2 = 1.3 (130)

The hole width to be used in the Lorentzian function is_ for a pressure of 3.2

15
tort

B' = 22.1p + 11.4 = 82.1 MHz (131)

Using this hole width andS. _ Eq. (129) predicts intensity t_ning data with a
mln

much larger Lamb dip than is seen in Fig (27). To get correlation with the theory_

the collision correction to the Lorentzian function_ a_5given by Eq. (122)

must be used. Thus Eq. (19) must be modified to read

I
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The ratio q/q, is presaure dependent and is given by 15

(13e)

_, l.§p + 11..4" 22._,_;+ 11.4 (133)

Using the collision corrected expression for the intensity given by Eq. (132)

the value of_will be determined from the data given in Fig (7)- First it should

be noticed that the magnitude of the intensity follows the differential temperature

curve. This has been attributed to a misalignment of the aperature. As the block

is heated from the bottom_ the block bends and brings the aperature into better

alignment. As heating continues, the thermal gradient in the block decreases

and the alignment problem gets worse. Thus the valve of_will be a function of

mode position.

To calculate ._, two valves of intensity must be known, since the data is in

arbitrary units of intensity. One point is the doppler center (_00). Thus

i __-I

Io = K i +_/q, (134)

For the second point, the value of the intensity used is wh_u the:,t_O_modes_ :

are symetrically placed about the doppler center. To eliminate problem_0_mode

competition, the valueo of the intensity at the tips of the off center mode

competition spokee (always assumed up) were used _ndi'the'value was divided

in half. Note thai'when these spikes are down, they determine the point of

zero ilaser intensity. This is quite important because this allows the subtraction

of backgroup light from the laser discharge.

Writing Eq (13e) at _ '= _

= El exp _ ,,I_ __ii .2

1+___(__)
(135)

Eliminating the arbitrary constant in Eqs. (134, 135) and solving for_, one finds

I
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' " (136)

- i

However the data from Fig (27) cannot be directly substituted in Eq. (136)

since the valuse of I° and I_ are obtained at different times and hence

at different values of_. It is necessary to plot I° and I_ as a function of

tuning frequency and use pairs of instaneous values. The results are shown in

Fig (28). The abscissa is units of tuning across doppler centers for successive

modes. At each doppler center andat each frequency midway between centers

a value of I° and I_ was used inEq (136) to,_calculate a value of _. The way

in which _varies as a function of frequency tuning is shown onlthe same

figure. A smooth, curve has been sketched through all the points. It is seen

that _ranges from about 1.3-1.5. A plot of differential temperature is also

shown on the same axis (obtained from the first channel :'in Fig (27)). The

differential temperature is seen to have the same shape asK, although it leads

by % .

Using Eq. (132), a set of durves of intensity vs frequency were plotted for various

values of _and pressure and are shown in Figs (29_-32) It is seen that the

data in Fig (27)agrees with the calculated curves (_e) (p=3 torr, _= 1.3-1.5).

Figures (33-3?) show intensity tuning data at various gas pressures. Figure (33)

is at a pressure of 2.9 tort. The Lamb dip is more pronounced and is due to

an increased_. Figure (34) is for a pressure of 3.2 tort. The center competition

spikes are more pronounced here and it is seen that at the end of the third mode_

the loss has increased such that the mode has dropped below threshold. Figure

(35,36,37) are for a pressure of 4.4, 5.0 and 6.4 tort. In Fig (37), the

intensity jumps are gain adjustments.

!
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I
Figure 29. Intensity vs Frequency for

case of Reduced Saturation
I Effect Pressure -- i torr
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I

I .36 Figure 30. Intensity vs Frequency for
case of Reduced Saturation
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!

i Figure 31. Intensity vs Frequency forcase of Reduced Saturation

Effect Pressure = 3 torr
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Figure 32. Intensity vs Frequency for
case of Reduced Saturation

I Effect Pressure = 5 torr
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i Figure 35 Mode Competition at _!-.4 Torr Pressure, With Zeeman Frequency Monitor.
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22. MODE COMPETITION - EXTINCTION

The computor solution of the mode compettiion equations for II and 12, as shown

in Figs (7,8) predict four possible solutions. The mode . competition discussed

in the previous'section has been of type "c" , as labeled in Figs, (7,8) Figure

(38) shows a more complicated type of mode competition at a pressure of 6.4 torr.

It shows one cavity mode being tuned back and forth about the doppler Center by

heating and cooling the quartz block. I I is the lower trace. Comparing Figs

(7,8,38), it is seen that I I and 12 both leave solution "c"(or possibly "d")

and jump to solution "b". After passing through the center spike, the intensities

jump back to solution "c" or "d". Upon cooling, the intensities jump to solution

"e" but solution "e" becomes complex right at the center and the intensities

quickly jump to solution "b"_ pass through the center spike and jump back to

solution "d" or "c".

Figures (39r41) show a traversal of the center region with the chartspeed increased

by a factor of 200 (50him/set). II is again the lower trace. Fig. (39) shows a

jump to solution "e". At this chart speed the time constant of 0.25 sec in the

meter monitoring 12 becomes apparent. Figure (40) shows a jump to solution "b".

After passing through the center spike, Fig (41) shows a return to sol_tion

"d" or "c". Notice an oscillation between solutions "c" and "d" in Fig (41).

Figs (42,43) show mode competition at 6.9 torr for one cavity mode being tuned

back and forth (many times) around the doppler center. From the slope of the

frequency monitor, it is seen that each pair is a cooling-heating (increasing-

decreasing frequency)cycle. I I is the lower (clockwise) beam. The frequency monitor

tracks I I. Hence if beam II is extinguished, there is no beam to track and the

output drifts. It is of interest to note that when II is extinguished and 12

doubles, the frequency monitor output remains constant. However, the frequency

monitor output does reflect intensity surges.

Due to the slower response time of the detector of 12, it is preferable to look

at this beam for a description of the mode competition. Consider the second cycle.

The sequence of solutions are (c,d)-b-(c,d)-e-b-(c,d). The sequence for the third

cycle is (c,d)-b-e-(c,d)---b-e-(c,d). The sequence for the fourth cycle is

(c,d)-e-b-e-(c,d)---b-e-(c,d). Note that the center spike is always downwards for

every cycle indicating that the backscattering into beam 12 is always greater than
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that into beam 12.

The frequency monitor calibration is approximately 12MHz/mm, giving a competition

width of approximately 50 MHz. The center spike is approximately 4 MHz wide.
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22. RELATIONSHIP BETWEEN POSITION OF CENTER SPIKE AND GAIN MAXIMUM

As discussed in the section on the frequency monitor, zero d.c. feedback current

output occurs at the frequency for which the laser beam experiences equal gain

for both maximum excursions of the a.c. magnetic field. For a symetric gain

curve_ this frequency is the center of the atomic transition, or "true" doppler

center. However_ when the gain curve is assymetric due to pressure broadening

or isotope broadening_ the point of zero output will be shifted towards the point

of maximum gain.

To consider this shift, first the magnitude of the a.c. magnetic field for

optimum sensitivity will be calculated. Neglecting assymetric effects, the

gaussian lineshape (normalized) is

g = exp (__2) (137)

If in an a.c. magnetic field the maximum zeeman splitting is _z, the maximum

differential gain is

_ g 2Zhg = exp [ (_ --. z) ] - exp [-(_ + _2] (138)

The sensitivity is the derivitive of Z_g with respect to _ evaluated at _ = O,

or

I 2Zig' = 4_ z exp -__z (139)

i Eq. (139) has a maximum at
_z --_/2

I

I
I

I
I

(14o)

Now consider the effect of the addition of another isotope whose transition

center is shifted _. from the center of the second isotope. If the relative
z

number of atoms of the 2nd isotope is ¢_ the gain is

g = exp (__2) + e exp [-(_ - _i )el (z41)

The maximum differential gain in the presence of an a.c. magnetic field is

_g :g(_ _ +_z ) _ g (_ __ _z ) (14e)

To find the frequency where the output of the frequency monitor is zero, one

solves Eq. (142) for _ when Z_g = O. When _i<< i, then _<< I_ and one finds

I
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_zero = ¢ exp (-_i 2)

sinh 2 _i_z

e_
z

When the magnetic spliting is optimized, Eq (140, 143) gives

(143)

_zero = _- exp (-_i 2) sinh 2 _i (144)
2

For the Ne 20 1.15_ transition and when the second isotope is Ne22_ then _. = 0.56
i

and Eq. (144) becomes

_zero = 1.8 ¢ MBz (¢ in percent) (145)

Using Eq. (141)_ the frequency at which the gain is a maximum was calculated

and found to give the same shift as in Eq. 145.

The frequency monitor was filled with a single isotope such that ¢ = 10 -2

percent. Thus the zero shift is much less than the sensitivity of the

instrument.

The collision broadened lineshape is obtained from Eqs. (122_C18) and for

T; i can be written as

g = exp(-_ 2) - _-_ [i - 2_ F(_)] + cF(_) (146)

?r

The frequency at which the gain is a maximum is

_max = c/2 (1-2 B')

The shift has been determined as 4.2 MHz/torlr°for low pressures.

"c" as

c = O.O15p (p _n torr) (148)

15
In obtaining Eq. (148), the relation

22p + II (p in tort) (149)
_' = 500

has been used.

(147)

This determines

In the presence of an a.c. magnetic field_ Eq. (142) holds for the differential

gain, where the gain is given by Eq. (146). Isotope effects are neglected. To

find the frequency where the output of the frequency monitor is zero, one again

sets the differential gain equal to zero. Since _z = 2/2 the Taylor expansion

F (_ _ _z) = _ F (_z) + _ F' (_z) + . . (150)
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is used to give

zero

-1o]-

.__ c F (_z) exp (_z 2) / 2_ z (151)

1 _ e__i
m_exp _ze[F(_z) +_z F'(_z)]

Z

Using the optimum magnetic field splitting_ Eq (151) becomes

•38c
_zero = _7iv[-_-.45_') (15e)

Comparing Eq. (152_ 147)_ it is seen the frequency at which the output of the

frequency monitor is zero is below that at which the gain is a maximum.

If the magnetic field were reduced such that the assymetry could be expressed

by a linear function_ the two expressions would be equal.

The frequency monitor gain cell was filled to a pressure of 6.4 torr. From Eqs.

(147_ 149) the shift of the gain maximum is 60 M}{z to the high side. Note that

at these pressures the frequency shift is no longer linear in pressure and Eq.

(147) is only a rough approximation. From Eq. (152) the zero frequency monitor

output point is 32 MHz.

In section 20 it has been shown that the center competition spike occurs

within 2-3 MHz of the "true" doppler center. This is opposed to a "gain

maximum' shift of 17 MHz for a laser pressure of 3.2 torr. Thus the seFeration

of 32 MHz between the zero frequency monitor output and the center competition

spike should be readily observed. Figs. (44_45) show this effect. Figure (44)

shows a slow thermal tune (decreasing frequency to the right) through the competition

spike at the doppler center. The time scale is O.25mm/sec. Points of "zero check"

were placed on the output of the frequency monitor. It is seen that the center

competition spike occurs well to the right (lower frequency) of the point where

the frequency monitor output crosses the zero output. The frequency monitor

calibration is 10-12 MHz/mm giving a seqaration of N30-35 MHz.

Figure (45) shows one mode being tuned across the doppler center in an increasing

and decreasing (frequency) direction. Note the slope of the frequency monitor.

The gas pressure in the laser was 7.0 torr. The frequency monitor was tracking

the clockwise beam_ hence as the beam is extinguished_ the output of the frequency

monitor drifts• The "zero checks" on the frequency monitor have not been ex-

plicity marked but it can be observed that they lie-_q9.5 rm_ up from the bottom

!
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of the scale. In both cases the center spike is observed to lie 30-40 MHz on

the low side of the zero frequency output of the frequency monitor.

It should be mentioned that the above was done while the laser was connected to

a vacuum fill station and the gain tube was filled with the same gas and

with the same fill station.
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24. OPTICAL FEEDBACK

Backscattering of energy from one traveling wave into the direction of the

other has bean shown to be a cause of mode c_npetition. A method of

controlling the mode competition is to reflect one of the transmitted

beams back into the cavity and into the direction of the other beam.

The reflectionmechaniamwas a 90 ° priam rather than a mirror. The aligamant

of the prism i8 much simpler since precise aligmnent is required inonly

one axis. A schematic of the optical feedback technique is sho_a_ in Fig (_6).

It is seen that energy from the counter clockwise beam is retroreflected

into the beam traveling in the clockwise direction.

Figure (47) shows a strip chart recording of the intensities of the oppositely

directed beams as a function of tuning three cavity modes across the doppler

gain profile. The gas pressure was 3.2 tort. It is noticed that the half

maximum width ofthe center competition spike has increased from the no external

feedback value of 2-3MHz to the feedback value of 30 MHz. The offcenter

competition spikes have also increased in width. Also the competition is

such that the beamwhoee intensity increases_ is always the clockwisebeam,

This is consistent with the mode competition model as shown in Figs (7_8).

The convention for labeling the beams I 1 or 12 is that the back scattering

coefficients satisfy _ -KR1, KC1. The doainating source of backscatterad

energy is reflection by the priam of energy from the c.c.w, beam into the

c.w. beam. Then the c.c.w, beam must be labeled I 1. Note that this labeling

is different from the previous data. This was intentionally done so that

external back scattering could reverse the direction of mode competition.

Referring to Fig (7) for 12, it is seen that solution "c" dips down and agrees

with the direction of competition in the c.c.w bum.

Since the beams are linearly polarised, a polariser was inserted between

the feedback priam and the laser. The amount of feedback was controlled

as one node was continuously scanned back and forth about the doppler center.

It was observed that for decreasing amounts of feedbacks the width of the

competition region and depth both decreased. This is shown in Figs (_8-50)

': .. • .. ! ._ _ _ .._- .._ :!,. d.._............ " "_"_ '""' " P_"_I.'"
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for a gas pressure of 2.0 torr. In Fig (48), the angle at which the

polarizer was set, for the first three groups of back and forth cycles was

O°_ 40 ° , 55°_ respectively. Maximum feedback is signified by 0°. The

last competition spike was for 65 °. The narrow spikes seen supperimposed

on the intensity curves are the intensities when the feedback prism was

momentarily blocked. In Fig (49) the second, third and fourth cycles are

for 85 °, 90 °, 0°, respectively. Note that the backscattering from the

external prism causes a change in the direction of competition. Figure

(50) shows competition spikes with maximum feedback. The last spike is

for zero feedback. Note that the backscattering extinguishes the c.c.w.

beam and that there is a long assymetric tail on the spike_ on the high

frequency side.
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25. PHASE DIFFERENCE BETWEEN OPPOSITELY DIRECTED BEAMS

The phase difference between the oppositely directed beams was measured as

a function of frequency tuning the laser oscillation across the doppler gain

curve. The laser was connected to the fill station and the beams were

frequency synchronized. The fringe pattern was formed by combining the

beams with a single prism. Photographs of the f_inge pattern were taken

through an image converter using XXX film. Figure (46) shows the fringe

measurement method.

Figure (51) shoWs the results of a typical frequency scan: The fringe

pattern spacing was adjusted such that only two maximum, at most, occur.

The phase difference is seen to be a constant over the doppler curve_ with

jumps of _ at the mode competition points.

Figure (52) shows a slow seen across the doppler center for a pressure of

3.2 torr. A sequence of 4 sec exposures were taken at the indicated points.

The fringe pattern results are shown in Figure (53). The vertical line

signifies a reference which was obtained by superimposing a heated wire

on the image converter. It is seen that a constant phase difference

exists with a jump of _ between frames 19 and 20. Referring to Figure (52)

it is seen that this is the peak of the mode competition spike. The frequency

monitor calibration is iO - 12 MHz/mm, giving a mode competition spike

width of 1.4-1.7_MHz. Figure (54) shows the results of a slower scan over

a period of 5 hours. A portion of the recorder chart is shown in Fig (_/_).

The times at which the fringe measurements were taken are noted at the

bottom border. The frequency monitor output and the intensity outputs over

the entire measurement period are sketched in Fig (54). Again, the results

show a constant phase difference with a jump of _ at the doppler center.

i
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Figure 53 Seouential Map Made From Photographs of Fringe Pattern

Position Taken During Thermal Freouency Scan. (Pressure of 3.2 Torr.)
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26. ROTATION DRIFT DATA

As a means of investigating the stability of the laser when operated as an integ-

rating gyro_ a fringe pattern was formed from the outputs of the oppositely

directed bemms_ as shown in Fig (46). When the laser is rapidly rotated 3 the

two beams are unlocked in frequency and there is a motion of the fringe pattern

at the frequency difference rate.

A direct measurement of the fringe pattern rate of motion determines the angular

velocity at which the laser is rotated° A count of the number of fringe pattern

Cycles passing a fixed detector determines the angular displacement of the

laser,

The laser was rapidly turned_ first in one direction and then in the other.

The magnitude of the rotation rate was the same for both directions and was much

larger than the lock-in threshold. As the laser was turned in_ s_y 3 the

positive direction_ positive counts accumulated. When the laser turned in the

negative direction_ negative counts were subtracted from the total. At the end

of a fixed interval of i00 seconds (_easured to a precision of better than i

part in 106)j the net number of counts were recorded. The net number of error

counts attributed to_atn_t_displace_ent was estimated to be less than iO counts.

If the laser were on a frame such that the optical paths for the oppositely _

directed rotating beams were equal (no null shift bias and no rotational

motion such as earths rate) the net number of accumulated counts during the iOO

second interval would be equal to the error counts. After five hours the average

net accumulated counts per one hour interval was 16_288 counts 3 corresponding

to a net rotation of i_°2 dog/hr. The accumulated counts per i00 second

interval is shown in Fig. (55). A for_ml analysis is given in Appendix G.

The rotation was in the direction of the rotation of the earth and at this

lattitude the net average bias null shift was 3.6 aeg/hro As a measure of the

accuracy of the bias rotation a i_ value was calculated as 0.3_ dog/hr.

The method used in calculating the I_ value is as follows. The time interval
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was chosen as one hour. The difference between accumulated counts over tlme

intervals of 36 x iO0 sec.= i hour was obtained for successive i00 second

points. The RMS of the accumulated one ho_r_ counts was 388 counts _hich

gave the above i_ value.

The percentage of points which differedlfrom the average one hour accumulated

counts by: less than the i_ value was 58.3 percent_ less than the 2_ values

was 96.9 percent_ less than the 3_ value was i00.O percent. Thus the distrib-

ution_iccmparedto::anormali:distribution 3 is more flattened at the center and

falls off slightly faster at the wings. The largest deviation from the mean

_s12_.17_."_ _ _:_ : _ _:i ....
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2"/. EQUIPMENT LIST

• Quartz Block Ring Laser and Dielectric Coated Mirrors (I.15_) :

• D.C. Power Supply for Laser:

• Detectors (two) for 1.15_ radiation_ Hoffman EATEI Photovoltaic Silicon Cells:

• Infra-red Pass Optical Filters (two) for Detectors:

• D.C. Amplifiers for Detectors, (one) Kintel Model 207B and (one) Keithle F

Instruments Mode 61OA Electrometer:

• Four Channel Sanbor_ Strip Chart Recorders:

• Thermistors (two) for Temperature Monitoring of Quartz Block:

• Zeeman Cell Frequency Monitor:

Vacuum Fill Station and He 3 and Ne 20 gas:

Right Angle Prism (two) for Fringe Pattern and for Back Reflection:

• Optical Wedge

Infra-red Image Convertor:

• Heat Transfer Plate for Thermal Tuning of Laser:

• Glan Thomson Prism Polarizer:

• 35 mm Camera (xxx Film) for Fringe Pattern Recording:

• Heated Wire for Fringe Pattern Reference

• Honeywell 1800 Computor:

• Honeywell 400 Computor:

• Rate Table-Lietz

Optical Gate:

• Digital Counter_ Computor Measurements CO. Model 2887A :
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APPENDIX A

Determination of Self-consistant Equations

Consider the field to be a linearly polarized plane wave with the Ppynting

vector in the z-direction. It is assumed that the field can be closed upon

itself by some means without losing its plane wave properties. Thus Maxwell's

equations can be solved in Cartesian coordinates for one dimension only. It

is also assumed that the frame is rotating with a projectinn of the angular

velocity of (_Qrot) along the normal to the plane of the cavity.

T_e one-dimensional form of Maxwell's equations expressed in the rotating

fram_ I are (MKS units)

_E _B

+_ = o , (AI)

_H _D

_7+_+a =o , (A2)

B =%H- E , (A3)

D = ¢oE + P -aH , (A4)

Where

J = aE + a s E , (A5)S

a = 2A Qrot/(l_ 2) (A6)

and L is the optical path of the cavity and A is the geometric area enclosed by

L. Maxwell's equations are written only to first order in _rot" The effects

of a medium in the cavity have been taken into account_ to first order_ by

considering L to be the optical path traversed by the light beam 191

_ni:;Eqaation(AS.} the:durrhnt density:has:'been:writtenas:the:sum:of two terms.

The first represents the losses of the cavity and the fictional conductivity

can be expressed in terms of the passive Q of the cavity as

a/¢ ° = w/Q (AT)

.... ..- . ,.:.. .:: .: : ;.,
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The second term in Equation (A5) represents losses due to forward scattering

and back scattering. Whether or not this term is actually a loss will depend

upon the phase of the scattered radiation with respect to the phase of the oscil-

lations. This term and the term in P in Equation (A4) will be treated as a

source term in the inhomogeneous wave equation for the electric field intensity.

Combining Equations (AI - A5, A7) the one dimensional inhomogeneous wave

equation for the electric field intensity becomes

bEi/.._ _2E W_,_E 2a _2E _ w2P rOs s (A8)

¢o_o _-_ + _= + +--:Jr _ , -6:
m

' ¢o_o o o

In Equation (A8) only terms linear in "a" have been retained and since the

macroscopic polerization is nearly monochromatic, the second time derivative of

P has been replaced by _ 2p.

For the case of an empty lossless cavity (no scattering) containing two oppositely

directed traveling waves, the solution of Equation (AS) gives

E(z,t) = E 1 sin (Kz +[_t) +E 2 sin (Kz - [_t).
(Ag)

I

I

I

I

I

I
I

This leads one to expand the solution of Equation (A8) into the set of empty

cavity normal mode eigenfunctions (ECNME)

E(z,t) = Y_n [An(t) Un (z) +_n (t) Vn (z))]
(AIO)

with

U n (z) = sin KnZ , (All)

V ((_) = cos K z . (AI2)
n n

For a ring cavity of length L, E(z,t) satisfies periodic boundary conditions

giving the wave number

K n -- 27Fn/L • (AI3)
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The ECNME satisfy the equation

rd2 (Un Z,)L dz---_+ ¢°_° _n2 Vn<Z ) = 0 • (AI4)

Making use of the orthogonality properties of the ECNME, equations (A8, AIO_

AI4) give the set of coupled equations for the time dependent coefficients of

ECNME as

. dA c2d_ 2 ad2An w n 2 n w s d

+ +_ A 2aK =-- e dt Esn:l ,](AI_)
dt 2 Qn dt n n n d_ co n ¢o

2_, c2dAdP_An + w dAn w p (AI6)
dt 2 Q_'- d7 + _ + 2 .a K _ N s dn n n dt co n ¢o dt Esn '

with

L

Pn(t) = (2/L) _ P (z,t) Un(Z ) dz,
O

.L

_n(t) = (2/L) i P (z,t) Vn(Z ) dz,
O

Esn(t) (2/L) _L= E s (z,t) Un(Z ) dz,
O

_sn(t) (2/L) _L= Es(Z,t)Vn(Z)dz.
O

(AIT)

(A18)

(A19)

(A20)

In Equations (AIS, AI6) the Q of each mode has been subscripted for greater

generality.

As discussed by Lamb, for the case of the principal mode separation being

much greater than the passive cavity width such that time dependent Fourier

components of A which are far removed from the cavity resonance can ben

neglected_ one can write

An(t) = Eln(t ) cos eln + E2n(t) cos e2n

_n(t) = Eln(t ) sin eln - E2n(t) sin e2n

(A21)

(A22)

z(
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where

e :w t +_ (t)
in in in i = l,e. (Ae3)

The Fourier components of the polarization are written as "in phase" and "in

quadrature" term with respect to frequency "one"_ or

Pn(t) = Sin(t ) sin @in + Cln(t) cos @in (A24)

P_n(t) =[_in (t) singe in +_In (t) cos @in (A25)

In Equations (A21-A25)_ the time dependent coefficients are slowly varying

with respect to optical frequencies. The form of equations (A21_ A22) are

such as to reduce_ in an empty cavity to two oppositely directed traveling

waves with different frequencies and amplitudes.

Now to consider the scattering, source terms in Equations (AIS_ AI6). Refer

to Figure AI. It will be assumed that there exists some mechanism for

E2(_2t + _02)

s2E2(w2 t + _2 + 52)

rlEl(_it +floI +%o I)

Figure AI.

4--

--- El(OJlt + q0I)

SlEI(O_I t + _01 + 81 )

--" reE2(w2 t + _2 + ¢2 )

Scattering Source Terms

both forward and back scattering. For forward scattering, some of the

energy from each beam is scattered in the same direction as the beam from

which the scattered energy originated_ but with some phase angle. For back

scattering_ some of the energy from each beam is scattered in the opposite

direction of the beam from which the scattered energy originates_ again

with some aribitrary phase angle. Thus going in the same direction as

beam "one"_ is scattered energy of the same frequency as beam "one" but

with some phase difference_ plus energy with the frequency of beam "two".

The same type of statement applies to the energy traveling in the opposite

direction. Using the traveling wave formalism as in Eqs. (A9_ AIO) and
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substituti_ng: into Eqs. (A193 A20), the Fourier components of the scattering

fields are found as

E cos + + cos e2n ) ''sn = rlnEln (eln eln ) r2nE2n (82 n +

+ SlnEln cos (eln + 81n ) + S2nE2n cos (e2n + 52n )

E = sin + + sin ( +sn -rlnEln (01n ¢in ) r2nE2n 02n ¢2n)

+SlnEln sin (eln + 5in ) - S2nE2n sin (e2n + 62n )

(A26)

(A27)

The terms in rin and Sin (i = i_2) signify energy being back and forward
th

scattered_ respectively_ into the n mode traveling in the direction of the

radiation oscillating at frequency w.. The r and s coefficients are the back

and forward scattering coefficients_ respectively_ and are considered to be

much less than unity.

Substituting Equations (A21-A27) into Equations (AIS_ AI6) and equating coef-

ficients of sin elh and cos eln to zero_ four equations are obtained_ which

when manipulated give

CY

_in + w____ = w s
2Q n E1n _ (_in - Sin) - --2 r2nE2n cos (*n + e2n) ' i'

.0" s (A28)

-2"_" Sin Eln cos 51n
O

• [ ]ID -- W

_' E2n + Q_n E2n _ (_In - Cln) sin *n - (Sin +_In ) cos *n ( "

a (_9)
S S

- 2T rlnEln cos ($n - ¢in ) - 27 s2E2n cos 62n
O O

• \ (_ \

(nln 01n) Eln --e_-- (Cln + Sin) + r2nE2n ¢2n )
o O

(A30)s
+ 2-e--SlnEln sin 81n

O
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I °[ ](_2n - e2n) E2n =e_ ° (Cln - _In) cos _n - (Sln ÷_In ) sin _n

! °
_ rlnEln sin (_n _ S2nE2n sin 82n_ • _¢ln) + s

o o

I where

(A3!)

_n = e2n - 61n -- (tu2 - °°l)t + (_2 - q°l) (A32)

is a slowly varying function of time. In the derivation of Equations (A27-

A31) 3 second time derivatives of slowly varying functions of time have been

neglected.

I
l

I

It should be noticed that in Equations (A30_ A31)_ the ECNME frequencies for
th

the n mode_ Qn' have been replaced by fin' where

2
f2n = fin + akn c (A33)

2
Qln = fn - aKn c (A34)

This occurred because of the coupling terms linear in "a" in Equations

(AIS_ AI6) and could be seen most easily by considering the solution of

Equations (AIS_ AI6) for an empty lossless cavity. For this case

-I
Z =Q =P =0
s

I

l
I
I

Expressing An(t ) and _n(t) by Eqs. (A21, A22) and substituting into Eqs.

(AIS_ AI6) for the empty cavity case_ one finds_ upon equating coefficients

of sin Wln t and cos Wln t to zero_ the equations

2 2 2

W2n - fn - 2aKnC W2n = O (A35)

2 2 2
- Q + 2aK cc_ = 0 (A36)Win n n in

2 _ f12Since w _ _ (W - fl)
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Eqs. (A35, A36) become

2

tV2n = f)n +: aKnC ' (A37)

2
- c . (A38)Win = _n aKn

In Eqs. (A37, A38), Win, WEn are the ECNME Oln' O2n introduced in Eqs.

(A30, A31) • From the definition of ':a" given in Eq. A6, the passive cavity

frequency splitting is given by

n2n - nln = (2_) 4A Orot/kn L . (A39)

The physical significance of this cavity frequency splitting is that due

to the cavity being located on a rotating frame, the resonant frequency is

different for radiation traveling with and against the rotation.
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APPENDIX B

Analysis of Lock-ln Equation

The lock-in equation to be analyzed, is of the form

c

=_q +Z [P2 cos (_+_2)+91 cos(_- el)]

By simple manipulation 3 Eq. (B1) can be put into the form

(BI)

i' (B2)

where

2 2 3Z_ L -= (c/L) [p I + 92 + 2911:)2 cos (e I + ¢2)] 1/2 (B3)

91 sine I - 92 sin e2
Tan _ = (B4)

91 cos¢ I + p2 cos c2

To simplify the integration of Eq (B2) 3 initial conditions will be chosen

so that at time t = to 3 ) = _. Then Eq. (B4) becomes

r)-B dx ft
Jo _Q +Z_LCOS x = t dt

o

First consider the case when Z_Q> Z_ L.

give

1/2

where

,°:2
i AqK =_L > I

I

I

For the case when K_ 13 then

K , _LK "* _(K2± l) l/2

and Eq. (B6) reduces to

(B5)

Then Eq. (B5) can be integrated I to

tan[_[_L (K2_1)1/2 (t_to)/2;j
(B6)

(BT)

I

!
le

= _ +Z_ (t - to ) (BS)

Chemical Rubber Table of Integrals- llth Edition 19573 P 293 NO. 248
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This is the expected result for the charge in the relative phase as a function

of time in the absence of backscattering effects.

The period of t._me T, over which _ change by 21T can be obtained from E l. (B6)

by writing Eq. (B6)for time t and time t=T. Then subtracting the two

equations and taking the tangent of both sides_ one finds

T = -2"n- ,, (B9)

kf_ L (K_' I ) 1/2

Using this period to define the observed frequency in the presence of

back scattering_ one finds

Z_ = [Zlf2 2 - Z_L 2] 1/2 (BI0)

This equation shows that the effective frequency difference between the oppositely

directed traveling waves_ defined in terms of the periodicity of the instantaneous

phase difference is reduced from the no-backscattering value due to the

mutual coupling between the beams. For small values of rotation or_

z_<Z_ L ,

the beams are frequency locked_ or a constant phase difference exists between

the oppositely directed beams. This could be observed from direct integration

of Eq:. (B5) for the case of K<I. From the table of integrals I,

 LiK21J2ttoIn[ IK21J2tan,,, I_K 2) 1/2 tan _ (@-_) - (I+K)

As t- -_ ==, Eq (BII) gives

(BII)

-I I+K I/2
- B = 2 tan

I-K (BI2)

Equation (BI2) shows that the phase difference _, changes from @ = _+_

at threshold (K = i) to _=_+_at zero input rate. The phase conditions

Eq. (BI2) can also be obtained directly from Eq. (BI2).

At values of K corresponding to rotations slightly above lock-in_ Eq. (B6)

• ' k



I
I

I

I

I
I

I
I

I
I
.l

I
l

l

l

l

l

I

o

u_
o

_n
4-J

C

v

9

8

7

6

5

4

3

2

0.0

D

= Measured Beat Freq.

_Q + f_Qbias = Expected Beat Freq.

= f_q + _bias

/

J
/../

/
/

/

/

/

//

vs 2_ + f_qbias

/
/ / -4 l..

o.o 1 2 3
l ........... .I., - l I | 1

4 5 6 7 8 9

Figure 1,5.

2_ + 2f_bias (in units of _Qlock )

Measured Beat Frequency vs. Beat Frequency in the Absence
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becomes (for K = I + 8, 8<<I)

_- _ = 2 tan-iI(2/8) i/2 tan[f_L (8/2) 1/2 (t- to)] ] (BI3)

Thus except for times when the tangent function is approximately zero_ the

phase difference is _ - _ = _ which is the threshold value. Thus slightly

above lock in threshold the phase remains essentially constant over a period_

and has a rapid jump of 27r. This gives rise to the so called distorted

waveforms.



I

I

!

I

!

I

I

!

I

!

!

I

I

!

I

!

!

I

-C 1- i•

APPENDIX C

Determination of First Order Polarization

Using the single mode interaction as given by Equation (A60), the first order

Fourier components of the polarization are given by:

f

j (I) (t) 2il_abl2 L =0

Pn

(I) = _L J_C_W(v)dv T(v) _ N(z,t)dx _F dT' exp -

I _n (t) - o
\

/

z) ! -
(Cl)

i un( ':I ElCOS[(Wl +Kv) t' +%01] + E2 cos[(w 2 Kv) t + %02]]Un(Z) +{ - ,

• Vn(Z ) [ LL

_.__o__o_+_v_, _n_o_-_v,_'+_ +_._.
where T' = t - t' and W(v) is the normalized velocity distribution. T(v) is

the proper Lorentz transformation necessary to transform the polarization

back to the cavity frame.

7ab + iw) T'

The above expression is simplified by the rotating wave approximation.

example

exp- (Tab + im)T' cos (w I + Ku)t' =

i

exp - icult exp -iKvt exp - [Tab + i (_ - upI - Ku)] T'

For

(c2)

Only the negative frequency component of the cosine function is used to obtain

Eq. (C2). The positive frequency component would give a term of the form

exp - [Tab + i (w +e I 4iilKv)]

and is neglected.

Thus inL_aaking the rotating wave approximation, Equation (CI) becomes

I
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IT (1)
i n

where

(_)l(t)--ii%bi2_L
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L

_co O O

U
n

V n

')(Un(Z) + iV (z)) +E 1 exp -(iwlt + i901 + iKvt + 71__ n

E2 exp - (iw2t + i_2 + iKvt + 72+_'_(Un(Z ) + iVn(Z ) )I + C.C.

J

(z)

(z)

(c3)

7i+ + Tab + (w - w i + Kv), i = 1,2. (C4)
m

Since U + iV _ exp + iKz, Equation (C3) is of the form

E 1 exp - i(wlt + Kz) + E2 exp - i(_2_ - Kz)

Now in transforming the traveling wave fields to the frame of the moving

atom, fields of the form (wt + Kz) were transformed such as to increase the

frequency while fields of the form (wt -Kz) were transformed such as to decrease

the frequency. To transform the polarization back to the cavity frame_ it

is only necessary to make the reverse transformation.

Thus, T(v) is exp iKvt and exp - iKvt for the term in E 1 and E2, respectively.

As a general rule, the Lorentz transformation can be carried out by placing

the factor exp + iKv next to each bracketed U + iV.

The ECNME are then written in exponential form and second harmonic spatical

terms are neglected, or (neglecting the "n" subscript since only a single long-

itudinal mode is considered to be oscillating)

and

U __+iV = _+ i exp (_Kz) ,

U (U + iV) =

i

v (u+iv) _-+_

I
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The second harmonic spatial terms can be neglected as long as the population

inversion density is slowly varying over spatial distances on the order of

optical wavelengths. The effect of not making this approximation will be

considered in a later section.

I
I
I

I

Thus Eq. (C3) becomes

p(1)n (t) - ilgab'2_Ku _" ;_ 2 ,co1/2 exp- i(wlt +q01) dw exp - w dx
- O

[E 1 exp (-2_x + 2i(_ I +w)x) + E2 exp (-i t 2_x + 2_(_ 2 -

_ (1)n (t) = l_abl2_Ku" _ 2 [co
ITI/2 exp - i(_it + q01) dw exp - w dx

_co O

w)x_ ]+ c.c.,

[E 1 exp (-2qx + 2i(_ I _ #)x) - E2 exp (-i t - 2_x + 2i(_ 2 - w)x)] + C.C.

where the following substitutions have been made:

(c5)

(c6)

I 1 Vx = 2--KuT' , _ ='X a Ku, _i = (wi- w)/Ku, w = v/u, and

the velocity distribution has been chosen as Maxwell/an, or

I --- 2W(v)dv = ('Tr) 2 exp - w • (c?)

I

I

Since

-1/2 _ (_w 2 2IT dw exp + 2iwx) = exp -x (:eS)

I

I
I

I
I

and defining the Hilbert transform of the Gauss/an integral as

Oo

Z(_) = 2i _ exp (-x 2 -2hx + 2i_x) dx,
O

(c9)

Eqs. (C5, C6) can be written as

p (1) (t) =- (A/2) exp- (wit +q)l ) [E
n

(ClO)

z (_i) + E2 exp (-it) Z (_2)] + C.C.

n(1) (t) =- (iA/2) exp- (wit + qOl) [EIZ (_i) -

(ell)
E2 exp (-it)Z (_2)] + C.C.
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The "in phase" and "in quadrature" Fourier components of the polarization,

as defined in Eqs. (A24_ A25), can be obtained as

(I) (t) A [EIZ i (_i) + E2 cos @ Zi (_2) E2 sin_Zr(_2)]Sn = _ (C12)

Cn(1) (t) = - A_[EIZ r (_I) + E2 cos $ Zr ({e) - E2 sin{Zi(_2)]

(1)
_n -" - A [EiZ r ({i) - Ee cos _ Zr<({2) - E2 sin_Zi(_2)]

(1)
C_n = - A [EIZ i (_i) + E2 cos _ Z i (_2) - E2 sin_Zr({2)]

(C13)

(C14)

(C15)

I

I
I
I

I
I

I

Substituting EqsL(CI2- C15) into Eqs. (A28 - A31) and neglecting the scattering

terms, the self-consistant equations, to first order, are found to be

Ej +_i (w/Q j) Ej =_I (W/Co) AE.Zji ({j) j = 1,2 (C16)

i

((]j - wj - _j) Ej = - _ (0D/Co) AEjZ r (_j) j = 1,e (C17)

For the doppler with much larger than the natural width (_<< 1) the expansion

of Equation (C9) gives

Zi({). =_?F exp - {2 _ 2_ [i - 2_ F(_)] + 0 (2) (018)

Zr(_) =- 2F(_) +_{_ exp - _2 + 0 (2) (C19)

with F(_) given by

| S_ 2F(_) = exp (_{2) exp x dx , (C20)

o
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APPENDIX D

Determination of Second Order Polarization

2
The second order population inversion density is given as

A p(2)(z,v,t) = T(v)A p of(°)(z,v,t) _ dT' dT" [exp(-_aT')
o o

+ exp(-Tb_')] exp - (Yab + iw)_" Vba(t') Vab(t") + C.C.

(DI)

where the substitutions T' = t - t' T" = t' - t" have been made and the

interaction is given by Equation (38). The zero'th order population inversion

density (inversion in the absence of stimulated emission) is given by

A p(o) (z,v,t) = W(v) N(z,t) (D_-)

Making use of the rotating wave approximation, only the positive and negative

frequency components of Vba(t')and Vib(t',), respectively, give contributions.

The interaction terms then have the form

(D3)

Vba (t') "_i exp [i(w I +Kv)t' +_I] (U - iV) + Ee exp[i(w2-Kv)t' +_e] (U+iV)

Vab(t" ) -_Ei exp[_-i(wl+ Kv)t"- %o1] (U + iv) + E2exp[_-i(_2-Kv)t"- %02] (U-iV)
(D4)

The cross terms in EIE I have the factor (U _ iV) 2 _ exp _ 2iKz and can be

neglected. The interaction terms are then of the form

2

Vba(t" ) Vab(t") _ [E 1 exp i(w I + Kv) T"
(Db)

2 _ - iKvt
+ me exp i(w e Kv)T"] (U+iV) e iKvt (U - iV)e

In Equation (D5) the Lorentz transformation has been carried out by the rule

stated in Appendix C.

The double integral on Equation (DI) can now by evaluated to give_

I
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AP

where

(e)(z,v,t): -_a_(°) (-,v,t)Ii11[_ - I(_I

+ze[n- i(_e- w)] -i] +c.c.

W(v) dv : (_r)-I/2 exp (-w 2) dw,

+ w)]
-I

=v;/6

Combining the complex congugate term in Eq. D6 and writing

A p = Z_ p (0) +LIp (e)

and averaging over the cavity length, one gets

Z_ (v,t) : N(t) W(v) [i - 211 _ (_i + V/fJ)

where

i ,_L
_(t) =ij N(-. t) dz

0

212X(g2 - vA,;)]

(D6)

(D?)

(D8)

(Dg)

(DIO)

(D11)
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APPENDIX E

Determination of Third Order Polarization

The third order Fourier components of the polarization are given by

p (3) (t)
n

(3) (t)
n

2i_i_L W(v) T(v) dv j N(z,t)dz d_'
O O O O

I

dT" [ dT" '

O

exp - (7ab + iw) T' [exp - 7a T" + exp - 7bT"]

[exp- (Tab + iw) _'" + C.C.]

Un(Z)

V(z)

Vab(t' ) Vba(t") Vab(t'") +C.C.

(El)

where the substitutions

T" = t' t" T'" = t" - t'"T' = t - t'_ - (E2)

have been made and the interaction is given by Equation (38).

The first step to be made towards the evaluation of Eq. (El) is the rotating

wave approximation. However in making the rotating wave approximation, great

care must be taken in including all the terms that might possibly give a

contribution to the third order polarization.

From E q. (38), the interaction Vab(t') , Vba(t"), Vab(t'")_ respectively_

can be written as

I

Vab(t') = [i] = _ E 1

i
E2

(U-iV) exp i [(w I +Ku) (t - m') +q0 I] +

(U +iV) exp-i[(w I +Ku) (t- T') +_]

(U + iV) exp i [(_2- Kul (t- m') +q02] +

(U - iV) exp - i[(_ 2 - Kv) (t - T') +_02]

+

(E3)

Vab(t") = [2] Vab(t'") = [3]

Equation (i_) is used to obtain [2] and [3] by letting
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t - T' t - T" in [2] -E2-

t - _' t - T' - T" - _'" in [3]

The Lorentz transformation T(v)_ to transform the polarization back to the

cavity frame can now be caried out. Following the rule introduced in Appendix

C, all factors (U + iV) are replaced by (U + iV) exp (+ iKvt).

The interaction is Shen divided into+positive and negative frequency components.

For example [i] = [i] + [i], where [i]_ [I]_ represents the part of [i] containing

exp (iwt)_ exp (-i00t)_ respectively.

Then the interaction [i 2 3] can be written as eight terms. Th_ terms

[+ + +] and [- - -] can be neglected since they introduce polarization com-

ponents at three times the optical frequency. The terms

[++-l, [+- +l, [- ++] (E_)

introduce frequency components of the form exp i(w I t + _i ). Recall that

the formalism discriminates in favor of frequency _I by writing

_2 t +q02 = _ +wit +q01

where _ is slowly varying with respect to optical frequencies.

The three terms in Eq. (E$) give zero contribution under the rotating wave

approximation. This can be seen by noting that each individual interaction

that has a positive frequency has a factor in T' of the form exp (-i_l_').

In Eq (_) the interaction term is multiplied by a factor of the form exp

(-i_T'). Thus there are three factors of the form exp (-i_) and one of

the form exp (iwT)_ which under the rotating wave approximation_ gives

zero contribution. The three remaining terms are

[- +-], [- - +], [+- -] (ES)

These terms can be simplified by the rotating wave approximation and by

I
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neglecting rapidly varying special terms (as in the calculation of the first

order polarization in Appendix C). The resulting terms in Eq. (Eb) can be

written as

[E 1 (U + iv) exp (- 71_T')i + E2 (U - iV) exp (-i t - 72+7')] ) (E6)

2
[E1 exp -71__'_" _' + E22 exp (- 72 I"'")_:) + C.C.] +

EI2E2(U - iV) exp(-i$ - _'I _ + i ( _ _ I _ 1 -- 2Kv) 7") [exp (-72+T',');_, +

9+

"'i- 'J J] +exp

EIE22 (U +iV) exp (--_i __'_')_jI I i ( _2 -- _ l -- 2Kv) _")[exp -71__'!": +

exp - 72qi_ I

I where

_i = Tab + i (w - _ + Kv) i = 1,2. (ET)

i_+
Using just the first term in Eq (E6), the third order Fourier ccmponents

I of the polarization given by Eq. (El) become[

I i Pn(3)(1) = _ exp-i t+

J _n(3) (I) 4_3L (ml _Pl)

L r

[exp (-7aI-") + exp (-Tb T")] i VU

[
2

E2 (U - iV) exp (-it - 72+_'):i] [E 1

OO

L N(z,t) dz W(v) dv dT'dT"dT'"

O

[EI(U } iV) exp (i_[i_'):]_ }

(ES)

exp (-71 _'") + E22 exp(-Taj,,,)>+

= c.c.] +C.C.

Rapidly varying spatial terms are neglected so that

U 2 V 2 -,__i ,,_
= =2 , UV=O (E9)

and the following substitutions are made
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1 i v

x = _ KuT-' , y --_ Ku_"' , w ---u (ElO)

_ab _i-w
Ku _i = _ i = 1,2 (Ell)

2 . _ . _

I_12Ei I_12_ (El2)
I i = _>YaTb_ 2 i = 1,2 A = _ K_

The integral over dr" is easily evaluated and defining

_L

I J N(z,t)dz _-- (E13)
o

Eq. (ES) becomes

p (3)(i) = 2i_ A exp - i (wit +_i ) _ dxdy exp [- 2_ (x+y]
n (El4)

OD

7r-i/2 I_ dw exp(-w 2) [E 1 exp 2i (_i +w)x + m2 exp (-i$ + 2i (_2 -w)x)] "

[I I exp 2i (_I +w)Y + I2 exp 2i (_2 - W)Y + c.c.] + c.c. i _ i

Since

exp(w± 2_)d_=_ _p (21

and writing

en(3)(1) = F exp -i(wlt + _i ) + c.c ,

(_15)

(El6)

F =F++F_ , (El7)

it is found that

F_ = 2iAn !j

Eli 2 exp 2i(_ix + _2y ) + E211 exp [-i_ + 2i(_2x + _ly)] +

E212 exp[_i_ + 2i _2 (x - y)_] ,

[

exp [-_q(x + y) - (x - _t)2] JEll I exp 2i_ I (x - y) +
dxdy

(El8)
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2iAT i dxdy ÷ Y) (_ y)2]
r

_+ exp - + [_i_i e_p2i_1 (_ + y) +

E2_1 e_p[-i_ +2i(_2_-_ly)]i,].

The integrand in Eq. (EIS) can be evaluated by the substitution

_=x+y , B =x-y

O

I ? d_ + _ dB d_j dxdy:_ j_d_j_ o
0 -- -- -,

(E20)

Then using the definition of the Hilbert transform of the Gaussian as found

in Eq. (C9), Eq (El8) becomes

where

iA

F_ --F-- [ElXl Zl (_I) + E212 exp (-i#) Zi (_2)

( )-i (Ell2+E21 l) _ +i_ ,,_.({)_({)]
TI

(E21)

I
i ({) ._[ z(gl) +z ({2)] . (Eee)

The integral in Eq. (El9)ca_:?be_evatuated,_th;the,aame sub at iC=_t_o_,_s £_;_

,Eq., (E20)_.:but.,,w_h_,_ order;,df :inte@t_t!_on':so that

Equation (EIg) is then evaluated to give

F+ - iA_ [EIII[I + (_l + i_) Z (_)] ÷E212 exp (-i#)[I_{2 + i_) Z(_2)].,

1 z({_.),,_ 1 * ]"W zl_ [ ,_(_)]- _ Z_Z1 exp (-i_)[z({_)+ z({_)]

At this point the significance of the "Doppler approximation", made in

Lamb's paper _ can be seen. In the "Doppler Limit!' (_ for _1_ the term

axp (x +y) _ can be tr_ :.... " "_' " '



II

II
II

II
II

II
II

II
II
II

II
II

i
II

II

II
II
II

-E6-

Since the range of integration for x and y is only over positive values, the

dominant contribution comes from the term in (x - y), which is F_. Referring

to Eqs. (E21, E2_), it is seen that the contribution from F_ is an order of

bigger than the contribution from F+.

To evaluate the self-consistant equations, it is seen from Eqs. (A28-A31)

that the following combinations of terms are required.

S - C

(S +_) COS * + (C _ _) sin

C +S

(c-g) cos, +(s-_) sin,
(E21)

The "in phase" and "in quardrature" parts of!the Fourier components of the

polarization are defined in Eqs. (A2_, A25). Using Eq. (16) to define F

one can write

F = :_ [A + B exp (-i,)]/2 (E22)

and similar relations for F, A, B.

Then as seen from Eq. (E8), .Pm and _'m

are of the form

A_ U (U ÷ iV) a

B _ U (U- iV) b

_-_ V (U ÷ iV) a

~ v (u- iv)b

are related such that A, B, _, 7,

(E23)

When rapidly varying spacial terms are neglected such that U2 = V2 = _
2'

UV = O, then

A = iA, B =iB (E24)

By substitution, it can now be shown that the combination of terms given in

Eq (E21) take the simple form of

2A:,I 2Ar' 2Bi, 2Br, respectively (E24a)

-i
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It should be emphasized at this point that there is no _ dependence in the

coefficients A_and B. Thus as long as the polarization can be put in the form

of Eq (E23), no terms in # arise in the self-consistant equation, which could

lead to lock-in. Referring back to Eq. (E6), which is the general form of

the interaction after the rotating wave approximation and the neglecting of

the rapidly varying spacial terms_: it is seen that Eq. (E23) holds. Thus

for a single oscillating longitudinal mode (one pair of oppositely directed

traveling waves) no combination tone is generated in the non-linear medium

which could lead to frequency locking.

Using F_ (the polarization contribution in the "doppler limit'S) as given by

Eq. (E21),as given by Eq. (E21) the self-consistant equations, tto third order_

can be written as

El" + 21 (w/Q)E I = 21 (W/eo)AE I Zi(_l) _ llZi(_l) - I_ _(_) [-Zi +(_/_)Zr] (E25)

' I I (W/¢o)AE2 Zi(_2) _2) Ii_(_) [Zi _/U)Zr] (E26)Ee + _ (#_)E2 --_ - _2Zi( -

i

(®l+_l -hi)=_ (_I%)A Zr(_l)+ _21(_)[(_l_)_i-_!

I
(w2 - _2 - n2) = _ (W/eo)A Zr(_l) + ll_(_) [(_1%)_i - _r ]

(E27)

(Ee8)

The contribution to the polarization arising from F+, as given by Eq. (E24),

can be evaluated using the same technique. Adding this contribution to the

self-consistant equations changes the backeted terms on the right hand

side of Eqs. (E25, E27). They take on the form

zi(_l) - xI [(1 + 4n2)zi(_l) - 2_(1+_l Zr(_) )] - ma£(_) _

[El(_) - _ Zr (_)] ,

Zr.(gl) + (g/n)I21[(g)_gi- (n/g)'-Zr-_ . zi(_) zi(g2)]

+ 2nlI [_lZi(_l) + nZr(_2)]

(E29)

/

(E3o)
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where use has been made of the identity

(,_/_) -: (_/,_)_(_) = (_/_) <.7._(_) (E31)

Similar equations to Eqs (E29, E30) hold for beam "two".

2
If the delta function approximation were made, the bracketed parts on the

right hand side of Eqs (E25, E27) would read

zi (_l) -77 _l - _/-__2<f-(_) (:(,1_3_-)

Zr (ll) + (_/_) _ _2_(g) (I_33)

Thus the delta function approximation not only neglects terms on the order of

q, but also neglects gaussian factors in the third order polarization terms.

The neglect of these factors is not too serious for the treatment of a

"pure" single isotope type gas, but for a mixture of isotopes, leads to

incorrect results.

Now to consider the part of the interaction given by the second and third

terms in Eq. (E6). Substituting into the polarization expression given by

Eq. (El)and using the substitutions given by Eqs_ (EIO, Ell) and wrlt:ing

z;:.._ Ku_" , one finds

I Pn(3)(ll)) 2i'_'_N exp -f(wlt_°l). =
_ ,I ( 3 ) ( I I ) _ 3 _ (Ku) 3

n

_o_ dxdydz exp - 2q(x + y)

[exp (-2_aZ) + exp (-_qbZ)] [EI2E 2 (U - iV) l " _ exp[-i_ + 2i (_2 -w) x

G

_i (_ - _I - _w) z] exp_i (_ -I w) y + exp -2i(_ii4_ ) yj

EIE2 2 - _ , [exp [2i(_ I +w) x -2i (_2 _I -=w)z] exp 2i (_i + w) y +

(E34)

exp-'._2i (_2-w) y]j+ c.c.
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If one carries out the @w integration first it can be seen that all the terms

give a factor of exp - (x + y + z)2. Thus in the "doppler limit" all the

terms in Eq (E34) are of the order of B _ _ i, or smaller. Equation (E34)

was not evaluated. Thus to be consistant, all the terms on the order of

in the third order polarization, should be neglected. It should also always

be remembered that the resulting equations only hold for _ <<I.
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APPENDIX F

Calculation of Backscatter Correction to i]_o.l_rlzatlon

In writing the interaction in the presence of ba=kscatter, it is now assumed

that the steady state radiation field is composed of two sets of oppositely

directed traveling waves. The second set is generated from backscattering

of the first set, as shown in Fig AI. The expression for the first order

polarization is that given by Eq. (CI), except that the interaction field

now reads

i cos [(m I + Kv)t' + %01] + E2 cos [(m 2 - Kv)t' + %02]

\ . j

7

rlE 1 cos [(w 1 - Kv)t' + %0_]+ rAE2 cos [(w2 + Kv)t' + %02] " U +

(F1)
1 sin[(w 1 +Kv) t' +%01] - E2sin[(w 2- Kv)t' +%02] +

7

-riE I sin [(m 1 - Kv)t' +%01] + r2E 2 sin[(m2 + Kv)t' + %01] J V

Making the rotating wave approximation, neglecting rapidly varying spacial

terms and integrating over the cavity length, the first order Fourier component

of the polarization becomes

oo co

j j(I) -iI_12 N dvW(v) dT' [E 1 exp- i(mlt +%01)Pn = 2_
o o

exp (-71_T') + r I exp (-71+_' -i¢i)

ex_-_2J' )' + r2 exp (-72+_, - ie2)

+ E 2 sxp -i(m t + %02)

(F2)

] +c.c.

(i) = i P (i) [r I E2 -_, -E2] (F3)n n , r_, -. -r2,

The notation is identical to that in Appendix C.

Using a Maxwellian velocity distribution and integrating over velocity, Eqs.

(F2,F3) become

|



= -iA exp -(wit + %01) _ dx exp (-x 2 - 2Bx i + rI exp(-i¢l) ]
o

E 1 exp(2i_ I x)+ [l_r 2 exp(_i¢2)] E2 exp + 2i  ex)]]+ c.c.

(F4)

(I) = i P (I) [ E2 -r 2 -E2] (F5)n n rl' r2' -_-rl' '

The integrals in Eqs (F4_ F5) can be expressed in terms of the Hilbert

transform of the Gaussian integral to give

Pn(1) = F exp -i(_It + %01) + C.C. (F6)

Pn(1) =_ exp -i(o01t + %01) + C.C. (FT)

A
F= -_ [E 1 (i + r I exp - i¢i) Z (_i) + E2 (i + r2 exp -i¢2) exp (-i@)

(F8)

= iF [r I, r2_ E2 -_ -rl_ -r2, -E 2] (Fg)

Writing

F = _[A + B exp -i9]

= _[_ + _ exp(-ig)] ,

(FIO)

(FII)

it can be seen from Eqs. (F8; F9) that

= iA (-rl) , (FI2)

= -iB (-r2) . (FI3)

Hence Eq. (E24) is not satisfied and the factars in the self-consistant

equations will not take the simple form as given in Eq (E24a). By substitution_

it is found that

S-_ = [Ai(rl) +A. (-rl)] + [Bi(r 2) - Bi(-r2)] cos _ +i

[Br(r2)- Br(-r2)] sin

(FI4)
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C +_ = [A_. (r I) + Ar(".-ri)] + [B r (r 2) - B r (-r2)] cos @ +

[Bi (r2) - B i (-r2) l sin _ •

(F15)

Using Eqs (F8, FIO, FI2, FI3), it is found that

A i = -A E 1 [(I + rI cOS ¢i ) Z i (_i) " r I sin ¢i Zr (_i)]

Ar = -A E 1 [(i + r I cos ¢i ) Zr (_i) + r I sin el Zi (_i)]

B i = -A E 2 [(i + r2 cos g2) Zi (_2) - r 2 sin ¢2 Zr (_2)]

B r = -A E2 [(i + r2 cos ¢2) Z r (_2) + r2 sin ¢2 Z

(FL6)

(F17)

(F_8)

(F19)

Using Eqs (FI_-FI9) and Eqs (A28-A31) the first order self-consistant equations

become

l wA (_i) + r 2 E2 Z (_2)
_I + 00 El = 2"_o [El Zi i2Q I

I zr (_2)sin (# +62 ) ]

cos (# +¢2) .

(F20)

l
I

I

wA
=__ [E 1 Zr (_i) + r2 E 2 Zr (_2) cos (_ + ¢2) +

(Wl++l-nl) E1 2¢0 (F21)

Zi (_2)sin (# + ¢2)]

Equations for beam "two" are obtained by letting i - 2,2 - i and :# - -_.
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APPENDIX G

Analysis of Rotation Drift Data

From Eq. (54)3 the instantaneous frequency difference between the oppositely

directed beams is of the form

= _'qR + _'IB + LIC_Lcos :($-_) (GI)

The average observed frequency difference is 3 from Eq. (56)

= [ (_qR + _qB )2 - _L 2]I/2 (G2)

Assuming the quantities on the right hand side of Eq. (G2) to be time independent_

a time integration of Eq. <56) gives

N = T [ (_qR + _QB )2 - _qL 2]I/2 (G3)

where N is the number of cycles in a time T for a frequency Z_.

If the laser is rotated first in one direction and then in the other direction

with the same i_Rl 3 then Eq. (G3) can be written for both cases as

N+ = T [(_qR +_qB )2 - _qL 2]I/2

N_ = T [(_qR - _qB )2 - _qL 231/2

(G4)

(O_)

For the case of the rotation rate being much greater than the bias rate and the

lock-in threshold 3 a binomial expansion of Eqs. (G4j GS) gives_

N+- N_ = 2 T _qB (G6)

Thus the difference in counts when the laser is rotated in opposite directions

is just equal to the bias counts. For the case of the e_periment discussed in

section 263 earth's rate is included in the bias Germ.
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